Last active
August 29, 2015 14:24
-
-
Save TakuTsuzuki/06122af9c82f168e5a92 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn import ensemble, svm,datasets | |
import brica1 | |
# Randomforest Component Definition | |
class RandomForestClassifierComponent(brica1.Component): | |
def __init__(self, n_in): | |
super(RandomForestClassifierComponent, self).__init__() | |
self.classifier = ensemble.RandomForestClassifier() | |
self.make_in_port("in0", n_in) | |
self.make_out_port("out0", 1) | |
def fire(self): | |
x = self.inputs["in0"] | |
z = self.classifier.predict([x]) | |
self.results["out0"] = z | |
def fit(self, X, y): | |
self.classifier.fit(X, y) | |
# SVM Component Definition | |
class SVMComponent(brica1.Component): | |
def __init__(self, n_in): | |
super(SVMComponent, self).__init__() | |
self.classifier = svm.LinearSVC(C=1.0) | |
self.make_in_port("in0", n_in) | |
self.make_out_port("out0", 1) | |
def fire(self): | |
x = self.inputs["in0"] | |
z = self.classifier.predict([x]) | |
self.results["out0"] = z | |
def fit(self, X, y): | |
self.classifier.fit(X, y) | |
# SVM vs RFC Component Definition | |
class SVMvsRFC_Component(brica1.Component): | |
def __init__(self, n_in): | |
super(SVMvsRFC_Component, self).__init__() | |
self.make_in_port("in0",n_in) | |
self.make_in_port("in1",n_in) | |
self.make_out_port("out0", 1) | |
def fire(self): | |
x = self.inputs["in0"] | |
y = self.inputs["in1"] | |
self.results["out0"] = (x==y) | |
# Load iris dataset | |
iris = datasets.load_iris() | |
X = iris.data[:, :2] | |
y = iris.target | |
# Setup data feeder component | |
feeder = brica1.ConstantComponent() | |
feeder.make_out_port("out0", 2) | |
# Setup components | |
svm = SVMComponent(2) | |
svm.fit(X, y) | |
RFC = RandomForestClassifierComponent(2) | |
RFC.fit(X,y) | |
SR =SVMvsRFC_Component(1) | |
# Connect the components | |
brica1.connect((feeder, "out0"), (svm, "in0")) | |
brica1.connect((feeder, "out0"), (RFC, "in0")) | |
brica1.connect((svm, "out0"), (SR, "in0")) | |
brica1.connect((RFC, "out0"), (SR, "in1")) | |
# Add components to module | |
mod = brica1.Module() | |
mod.add_component("feeder", feeder) | |
mod.add_component("svm", svm) | |
mod.add_component("RFC",RFC) | |
mod.add_component("SR", SR) | |
# Setup scheduler and agent | |
s = brica1.VirtualTimeSyncScheduler() | |
a = brica1.Agent(s) | |
a.add_submodule("mod", mod) | |
# Test the classifier | |
svm_result=[] | |
RFC_result=[] | |
svm_vs_RFC=[] | |
for i in xrange(len(X)): | |
feeder.set_state("out0", X[i]) # Set data feeder to training data i | |
a.step() # Execute prediction | |
svm_result.append(svm.get_out_port("out0").buffer[0]) | |
RFC_result.append(RFC.get_out_port("out0").buffer[0]) | |
a.step() | |
svm_vs_RFC.append(SR.get_out_port("out0").buffer[0]) | |
for i in xrange(len(X)): | |
print "SVM: {}\tRFC: {}\tRESULT: {}".format(svm_result[i], RFC_result[i], svm_vs_RFC[i]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment