Last active
August 29, 2015 14:25
-
-
Save TakuTsuzuki/89bcd8f08f840f2b9195 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
from sklearn.decomposition import PCA | |
from sklearn.cluster import KMeans | |
from sklearn import datasets | |
import brica1 | |
# PCA Component Definition | |
class PCAComponent(brica1.Component): | |
def __init__(self,n_in,dimention=3): | |
super(PCAComponent, self).__init__() | |
self.pca = PCA(n_components=dimention) | |
self.make_in_port("in0",n_in) | |
self.make_out_port("out0",dimention) | |
def fire(self): | |
x = self.inputs["in0"] | |
z = self.pca.transform(x) | |
self.results["out0"] = z | |
def fit(self,dataset): | |
return self.pca.fit_transform(dataset) | |
# KMeans Component Definition | |
class KMeansComponent(brica1.Component): | |
def __init__(self, n_in,n_clusters=3 ): | |
super(KMeansComponent, self).__init__() | |
self.kmeans = KMeans(n_clusters = n_clusters ) | |
self.make_in_port("in0", n_in) | |
self.make_out_port("out0", 1) | |
def fire(self): | |
x = self.inputs["in0"] | |
z = self.kmeans.predict(x) | |
self.results["out0"] = z | |
def fit(self, dataset): | |
self.kmeans.fit(dataset) | |
# Load iris dataset | |
iris = datasets.load_iris() | |
X = iris.data | |
y = iris.target | |
# Setup data feeder component | |
feeder = brica1.ConstantComponent() | |
feeder.make_out_port("out0", len(X[0])) | |
# Setup PCA component | |
dim = 3 | |
pca = PCAComponent(n_in=len(X[0]), dimention = dim) | |
Z = pca.fit(X) | |
# Setup KMeans Component | |
kmeans = KMeansComponent(n_in= dim) | |
kmeans.fit(Z) | |
# Connect the components | |
brica1.connect((feeder,"out0"),(pca,"in0")) | |
brica1.connect((pca,"out0"),(kmeans,"in0")) | |
# Add components to the module | |
mod = brica1.Module() | |
mod.add_component("feeder",feeder) | |
mod.add_component("pca",pca) | |
mod.add_component("kmeans",kmeans) | |
# Setup scheduler and agent | |
s = brica1.VirtualTimeSyncScheduler() | |
a = brica1.Agent(s) | |
a.add_submodule("mod",mod) | |
# Test the pca and kmeans clustering | |
kmeans_results=[] | |
for i in xrange(len(X)): | |
feeder.set_state("out0",X[i]) | |
a.step() | |
a.step() | |
kmeans_results.append(kmeans.get_out_port("out0").buffer[0]) | |
hoge =[] | |
for e in kmeans_results: | |
if e ==1: | |
hoge.append(0) | |
elif e ==2: | |
hoge.append(1) | |
elif e ==0: | |
hoge.append(2) | |
for i in xrange(len(X)): | |
print "Label: {}\tKMeans_Result: {}\tTrue or Faluse: {}".format(y[i], hoge[i], y[i]==hoge[i]) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment