Created
March 19, 2020 20:59
-
-
Save Taneb/0ae1459d4abfc8a13912eccf80aae84f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Level | |
module Categories.Category.Closed.Instance.Sets (o : Level) where | |
open import Categories.Category | |
open import Categories.Category.Instance.Sets | |
open import Categories.Category.Closed (Sets o) | |
open import Axiom.Extensionality.Propositional | |
open import Data.Product | |
open import Data.Unit | |
open import Function | |
open import Relation.Binary.PropositionalEquality hiding (Extensionality) | |
closed : Extensionality _ _ → Closed | |
closed extensionality = record | |
{ [-,-] = record | |
{ F₀ = λ {(A , B) → A → B} | |
; F₁ = λ {(f , g) h → g ∘ h ∘ f} | |
; identity = refl | |
; homomorphism = refl | |
; F-resp-≈ = λ {_} {_} {f} {g} pq {h} → extensionality λ _ → begin | |
proj₂ f ∘ h ∘ proj₁ f | |
≈⟨ proj₂ pq ⟩ | |
proj₂ g ∘ h ∘ proj₁ f | |
≈⟨ cong (proj₂ g ∘ h) (proj₁ pq) ⟩ | |
proj₂ g ∘ h ∘ proj₁ g | |
∎ | |
} | |
; unit = Lift _ ⊤ | |
; identity = record | |
{ F⇒G = record | |
{ η = λ _ x _ → x | |
; commute = λ _ → refl | |
; sym-commute = λ _ → refl | |
} | |
; F⇐G = record | |
{ η = λ _ f → f (lift tt) | |
; commute = λ _ → refl | |
; sym-commute = λ _ → refl | |
} | |
; iso = λ X → record | |
{ isoˡ = refl | |
; isoʳ = refl | |
} | |
} | |
; diagonal = record | |
{ α = λ _ _ x → x | |
; commute = λ _ → refl | |
; op-commute = λ _ → refl | |
} | |
; L = λ _ _ _ f g x → f (g x) | |
; L-natural-comm = refl | |
; L-dinatural-comm = refl | |
; Lj≈j = refl | |
; jL≈i = refl | |
; iL≈i = refl | |
; pentagon = refl | |
; γ⁻¹ = record | |
{ _⟨$⟩_ = λ f → f (lift tt) | |
; cong = λ p → cong-app p _ | |
} | |
; γ-inverseOf-γ⁻¹ = record | |
{ left-inverse-of = λ _ → refl | |
; right-inverse-of = λ _ → refl | |
} | |
} | |
where | |
open Category.HomReasoning (Sets _) hiding (refl) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment