Created
December 6, 2017 13:33
-
-
Save Tathagatd96/424ba17fcb6321c453fb3059ff9d0f86 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Input layer: | |
net['data'] = lasagne.layers.InputLayer(data_size, input_var=input_var) | |
#Convolution + Pooling + Normalization | |
net['conv1'] = lasagne.layers.Conv2DLayer(net['data'], num_filters=6, filter_size=3) | |
net['pool1'] = lasagne.layers.Pool2DLayer(net['conv1'], pool_size=2) | |
net['conv2'] = lasagne.layers.Conv2DLayer(net['pool1'], num_filters=10, filter_size=4) | |
net['pool2'] = lasagne.layers.Pool2DLayer(net['conv2'], pool_size=2) | |
net['conv3'] = lasagne.layers.Conv2DLayer(net['pool2'], num_filters=20, filter_size=2) | |
net['conv4'] = lasagne.layers.Conv2DLayer(net['conv3'], num_filters=20, filter_size=2) | |
net['conv5'] = lasagne.layers.Conv2DLayer(net['conv4'], num_filters=20, filter_size=2) | |
net['pool3'] = lasagne.layers.Pool2DLayer(net['conv5'], pool_size=2) | |
#Fully-connected | |
net['fc1'] = lasagne.layers.DenseLayer(net['pool3'], num_units=100) | |
net['fc2'] = lasagne.layers.DenseLayer(net['fc1'], num_units=100) | |
#Output layer: | |
net['out'] = lasagne.layers.DenseLayer(net['fc2'], num_units=output_size, | |
nonlinearity=lasagne.nonlinearities.softmax) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment