Last active
September 2, 2024 18:34
-
-
Save TeWu/96cc5a49fce3fa0c6defcf5c50bdf309 to your computer and use it in GitHub Desktop.
Factorial function in lambda calculus - implemented in JS
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/// | |
/// Factorial function in lambda calculus - implemented in JS | |
/// | |
//// Lambda calculus | |
// zero = λs.λz.z | |
// succ = λn.λs.λz.s (n s z) | |
// mult = λn.λm.λs.m (n s) | |
// pred = λn.λf.λx.n(λg.λh.h (g f))(λu.x)(λu.u) | |
// minus = λn.λm.m pred n | |
// true = λt.λf.t | |
// false = λt.λf.f | |
// not = λp.p false true | |
// and = λp.λq.p q p | |
// is_zero = λn.n (λx.false) true | |
// leq = λn.λm.is_zero (minus n m) | |
// Z = λf.( λx.(x x) λx.f(λy.x x y) ) | |
// factorial = Z (λf.λn.( (leq n zero) (succ zero) (λy.(mult n (f (pred n))) y) )) | |
//// Lambda JavaScript - Only lambda definition and application allowed (recursion is not allowed - "const"s used for clarity, but every expression should be inlinable) | |
const zero = s=>z=>z | |
const succ = n=>s=>z=>s(n(s)(z)) | |
const mult = n=>m=>s=>m(n(s)) | |
const pred = n=>f=>x=>n(g=>h=>h(g(f)))(u=>x)(u=>u) | |
const minus = n=>m=>m(pred)(n) | |
const bTrue = t=>f=>t | |
const bFalse = t=>f=>f | |
const and = p=>q=>p(q)(p) | |
const isZero = n=>n(x=>bFalse)(bTrue) | |
const leq = n=>m=>isZero(minus(n)(m)) | |
const Z = f=>(x=>x(x))(x=>f(y=>x(x)(y))) | |
const factorial = Z(f=>n=> | |
leq(n)(zero)( | |
succ(zero) | |
)( | |
(y => | |
mult(n)(f(pred(n)))(y) | |
) | |
) | |
) | |
const factorial_inlined = (f=>(x=>x(x))(x=>f(y=>x(x)(y))))(f=>n=> | |
(n=>m=>(n=>n(x=>t=>f=>f)(t=>f=>t))((n=>m=>m(n=>f=>x=>n(g=>h=>h(g(f)))(u=>x)(u=>u))(n))(n)(m)))(n)(s=>z=>z)( | |
(n=>s=>z=>s(n(s)(z)))(s=>z=>z) | |
)( | |
(y=> | |
(n=>m=>s=>m(n(s)))(n)(f((n=>f=>x=>n(g=>h=>h(g(f)))(u=>x)(u=>u))(n)))(y) | |
) | |
) | |
) | |
const factorial_inlined_minified = (f=>(x=>x(x))(x=>f(y=>x(x)(y))))(f=>n=>(n=>m=>(n=>n(x=>t=>f=>f)(t=>f=>t))((n=>m=>m(n=>f=>x=>n(g=>h=>h(g(f)))(u=>x)(u=>u))(n))(n)(m)))(n)(s=>z=>z)((n=>s=>z=>s(n(s)(z)))(s=>z=>z))((y=>(n=>m=>s=>m(n(s)))(n)(f((n=>f=>x=>n(g=>h=>h(g(f)))(u=>x)(u=>u))(n)))(y)))) | |
//// JavaScript | |
const to_church_int = n => n <= 0 ? zero : succ(to_church_int(n-1)) | |
const unchurch_int = n => n(m => m + 1)(0) | |
console.log( unchurch_int(factorial_inlined_minified(to_church_int(5))) ) //=> 120 | |
// As ONE big lambda | |
console.log((n=>(n=>n(m=>m+1)(0))((f=>(x=>x(x))(x=>f(y=>x(x)(y))))(f=>n=>(n=>m=>(n=>n(x=>t=>f=>f)(t=>f=>t))((n=>m=>m(n=>f=>x=>n(g=>h=>h(g(f)))(u=>x)(u=>u))(n))(n)(m)))(n)(s=>z=>z)((n=>s=>z=>s(n(s)(z)))(s=>z=>z))((y=>(n=>m=>s=>m(n(s)))(n)(f((n=>f=>x=>n(g=>h=>h(g(f)))(u=>x)(u=>u))(n)))(y))))((f=>(x=>x(x))(x=>f(y=>x(x)(y))))(f=>n=>n<=0?s=>z=>z:(n=>s=>z=>s(n(s)(z)))(f(n-1)))(n))))(5)) | |
// Sources / See also: | |
// Church encoding @ Wikipedia: https://en.wikipedia.org/wiki/Church_encoding | |
// Programming with Nothing by Tom Stuart: https://youtu.be/VUhlNx_-wYk | |
// Y Not- Adventures in Functional Programming by Jim Weirich: https://youtu.be/FITJMJjASUs | |
// |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment