Last active
June 14, 2024 07:44
-
-
Save TeaPoly/9b4815202c17aea1c0b56c675ceb2ad3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# -*- coding: utf-8 -*- | |
import torch | |
def round_ste(x): | |
# STE for gradient | |
return torch.floor(x + 0.5).detach() + (x - x.detach()) | |
def round_clip(x, prec): | |
x = round_ste(x) | |
x = torch.clamp(x, 0, 2.**prec - 1) | |
return x | |
def scale_and_min(x, prec, axis, clipping=1.0, stop_gradient_scale=False): | |
min_val = torch.amin(x, dim=axis, keepdim=True) | |
max_val = torch.amax(x, dim=axis, keepdim=True) | |
min_val = min_val * clipping | |
max_val = max_val * clipping | |
scale = (max_val - min_val) / (2.**prec - 1) | |
if stop_gradient_scale: | |
scale = scale.detach() | |
return scale, min_val | |
def quantize(x, prec, axis, clipping=1.0, stop_gradient_scale=False): | |
scale, min_val = scale_and_min( | |
x, prec, axis, clipping, stop_gradient_scale) | |
x = x - min_val | |
x = torch.where(scale != 0, torch.divide(x, scale), torch.zeros_like(x)) | |
qx = round_clip(x, prec) | |
return qx, scale, min_val | |
def dequantize(qx, scale, min_val): | |
deqx = qx * scale | |
deqx = deqx + min_val | |
return deqx | |
class I2WasymScLinear(torch.nn.Linear): | |
def __init__(self, in_features, out_features, bias=True, **kwargs): | |
super(I2WasymScLinear, self).__init__(in_features, out_features, bias) | |
def _quant_weight(self): | |
qx, scale, min_val = quantize( | |
self.weight, prec=2, axis=1, clipping=1.0, stop_gradient_scale=False) | |
return dequantize(qx, scale, min_val) | |
def forward(self, input): | |
return torch.nn.functional.linear(input, self._quant_weight(), bias=self.bias) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment