Last active
April 12, 2020 12:13
-
-
Save Teagan42/bf4b941b34a79a3e184e149ff1efd82f to your computer and use it in GitHub Desktop.
A custom camera component that allows you to see the detected regions from the OpenCV image processor in Home-Assistant. Add this to your configuration directory: {CONFIG_DIRECTORY}/custom_components/opencv.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
camera: | |
- platform: opencv | |
camera: camera.front_door | |
processor: image_processing.front_door_opencv_faces | |
# Optional Parameters | |
name: OpenCV Camera |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Camera that highlights the detected regions from the opencv image processor | |
""" | |
import asyncio | |
import io | |
import logging | |
import os | |
import voluptuous as vol | |
from homeassistant.const import CONF_NAME | |
from homeassistant.components.camera import Camera, PLATFORM_SCHEMA | |
from homeassistant.helpers import config_validation as cv | |
from homeassistant.components.image_processing.opencv import ATTR_MATCHES | |
from homeassistant.loader import get_component | |
_LOGGER = logging.getLogger(__name__) | |
ATTR_CAMERA = 'camera_entity' | |
ATTR_PROCESSOR = 'processor_entity' | |
CONF_CAMERA = 'camera' | |
CONF_COLOR = 'color' | |
CONF_PROCESSOR = 'processor' | |
CONF_CLASSIFIER = 'classifier' | |
DEFAULT_COLOR = (255, 255, 0) | |
DEFAULT_NAME = 'OpenCV' | |
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ | |
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, | |
vol.Required(CONF_CAMERA): cv.entity_id, | |
vol.Required(CONF_PROCESSOR): cv.entity_id, | |
vol.Optional(CONF_CLASSIFIER, default=None): cv.string, | |
vol.Optional(CONF_COLOR, default=DEFAULT_COLOR): (int, int, int) | |
}) | |
def setup_platform(hass, config, add_devices, discovery_info=None): | |
"""Set up the OpenCV camera platform.""" | |
add_devices([OpenCVCamera(hass, config.get(CONF_NAME, DEFAULT_NAME), | |
config[CONF_CAMERA], config[CONF_PROCESSOR], | |
config[CONF_CLASSIFIER], config[CONF_COLOR])]) | |
class OpenCVCamera(Camera): | |
"""Visual representation of opencv matched regions.""" | |
def __init__(self, hass, name, camera, processor, classifier, color): | |
"""Initialize the opencv camera.""" | |
super().__init__() | |
self._hass = hass | |
self._camera = camera | |
self._processor = processor | |
self._color = color | |
self._name = name | |
self._classifier = classifier | |
@property | |
def name(self): | |
"""Return the name of this camera.""" | |
return self._name | |
@property | |
def state_attributes(self): | |
"""Return the device state attributes.""" | |
return { | |
ATTR_CAMERA: self._camera, | |
ATTR_PROCESSOR: self._processor | |
} | |
@asyncio.coroutine | |
def async_camera_image(self): | |
"""Return the camera image still.""" | |
from PIL import Image, ImageDraw | |
camera = get_component('camera') | |
image = None | |
processor = self._hass.states.get(self._processor) | |
try: | |
image = yield from camera.async_get_image( | |
self._hass, self._camera, timeout=2) | |
except HomeAssistantError as err: | |
_LOGGER.error("Error on receive image from entity: %s", err) | |
return | |
matches = processor.attributes.get(ATTR_MATCHES) | |
regions = [] | |
if self._classifier is None: | |
for key, value in matches.items(): | |
for region in value: | |
regions.append(region) | |
elif self._classifier in matches: | |
for region in matches[self._classifier]: | |
regions.append(region) | |
else: | |
_LOGGER.error("Cannot locate classifier %s", self._classifier) | |
return | |
if len(regions) == 0: | |
return image | |
stream = io.BytesIO(image) | |
im = Image.open(stream) | |
annotated_image = ImageDraw.Draw(im) | |
for region in regions: | |
x0 = region[0] | |
y0 = region[1] | |
x1 = x0 + region[2] | |
y1 = y0 + region[2] | |
annotated_image.rectangle([x0, y0, x1, y1], | |
outline=self._color) | |
image_bytes = io.BytesIO() | |
im.save(image_bytes, format='PNG') | |
return image_bytes.getvalue() |
We have decide to remove the link on the documentation page.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@klaasnicolass show us your setup