Skip to content

Instantly share code, notes, and snippets.

@Teggy
Last active September 4, 2024 17:59
Show Gist options
  • Save Teggy/1f525cf3027c92d9008d to your computer and use it in GitHub Desktop.
Save Teggy/1f525cf3027c92d9008d to your computer and use it in GitHub Desktop.
A Haskell "transcript" of Guy Steele's talk "Four Solutions to a Trivial Problem" (https://www.youtube.com/watch?v=ftcIcn8AmSY)
{-# LANGUAGE TypeSynonymInstances #-}
import Data.Monoid
import Data.Maybe
-- How much water does a "histogram" hold?
--
-- Inspired by Guy Steele's talk "Four Solutions to a Trivial Problem"
-- https://www.youtube.com/watch?v=ftcIcn8AmSY
type Height = Int
type Histogram = [Height]
-- Guy Steele's example histogram:
--
-- █
-- █~~~~~~~█
-- █~~~█~~~~~~~█ ~ : water (total volume: 35)
-- █~█~█~~~~█~██
-- █~█~█~█~~█~███
-- ███~█~█~~█████
-- ██████~████████
-- ████████████████
-- 2635281422535741
guySteelesExample :: Histogram
guySteelesExample = [2,6,3,5,2,8,1,4,2,2,5,3,5,7,4,1]
-----------------------------------------------------------------------
-- The sequential version
-- Exemplifies simple list processing (sum, zipWith, scanr1, scanl1)
sequential :: Histogram -> Int
sequential x = sum (zipWith (-) waterLevels x)
where
waterLevels = zipWith min highestToTheLeft highestToTheRight
highestToTheLeft, highestToTheRight :: [Height]
highestToTheLeft = scanl1 max x -- left-to-right sweep
highestToTheRight = scanr1 max x -- right-to-left sweep
-----------------------------------------------------------------------
-- The bitonic glob version (divide and conquer)
-- A plateau (height, width) in a histogram
type Plateau = (Height, Int)
-- Definition of a glob, see slide 46
data Glob = Glob { -- list of plateaux to the left of the highest plateau,
-- monotonically increasing heights
left :: [Plateau],
-- highest plateau
top :: Plateau,
-- list of plateaux to the right of the highest plateau
-- monotonically decreasing heights
right :: [Plateau],
-- volume of water contained in glob
water :: Int
}
deriving Show
-- overall width of a list of plateaux
width :: [Plateau] -> Int
width x = sum [ q | (p, q) <- x ]
-- volume held by list of plateaux if water is filled in to level m
fill :: [Plateau] -> Int -> Int
fill x m = sum [ q * (m - p) | (p, q) <- x ]
instance Monoid Glob where
mempty = Glob [] (minBound, 0) [] 0
-- mappend is indeed associative, says Guy
mappend (Glob xleft (xht, xwd) xright xwater) (Glob yleft (yht, ywd) yright ywater)
| xht < yht = let (lss, eql, gtr) = threeWaySplit yleft xht
in Glob (xleft ++ [(xht, xwd + width xright + width lss + fromMaybe 0 eql)] ++ gtr)
(yht, ywd)
yright
(xwater + fill xright xht + fill lss xht + ywater)
| xht > yht = let (lss, eql, gtr) = threeWaySplit xright yht
in Glob xleft
(xht, xwd)
(yright ++ [(yht, fromMaybe 0 eql + width lss + width yleft + ywd)] ++ gtr)
(xwater + fill lss yht + fill yleft yht + ywater)
| xht == yht = Glob xleft
(xht, xwd + width xright + width yleft + ywd)
yright
(xwater + fill xright xht + fill yleft xht + ywater)
where
-- Given a plateaux list (with monotonically increasing heights) and a level m,
-- split it into three:
-- 1. the part below level m
-- 2. the width of the plateaux list at level m
-- 3. the part above level m
threeWaySplit :: [Plateau] -> Int -> ([Plateau], Maybe Int, [Plateau])
threeWaySplit [] _ = ([], Nothing, [])
threeWaySplit x@[(a,b)] m
| a < m = (x, Nothing, [])
| a > m = ([], Nothing, x)
| otherwise = ([], Just b, [])
threeWaySplit x m
| m < n = let (p, q, r) = threeWaySplit y m
in (p, q, r ++ z)
| otherwise = let (p, q, r) = threeWaySplit z m
in (y ++ p, q, r)
where (y, z@((n,_):_)) = splitAt (length x `div` 2) x
-- introduce oplus symbol
(⨁) :: Monoid a => [a] -> a
(⨁) = mconcat
bitonic :: Histogram -> Int
bitonic x = water ((⨁) [ singletonGlob v | v <- x ]) -- may use parallel implementation of ⨁
where
-- a trivial glob of height h and width 1 (doesn't hold water)
singletonGlob :: Height -> Glob
singletonGlob h = Glob [] (h, 1) [] 0
-----------------------------------------------------------------------
-- The monoid-cached tree version
data CachedTree a
= NullNode a
| SingletonNode a
| PairNode a (CachedTree a) (CachedTree a)
deriving Show
val :: CachedTree a -> a
val (NullNode v) = v
val (SingletonNode v) = v
val (PairNode v _ _) = v
monoidCachedTree :: Monoid a => [a] -> CachedTree a
monoidCachedTree [] = NullNode mempty
monoidCachedTree [x0] = SingletonNode (x0 `mappend` mempty)
monoidCachedTree x = let (a, b) = (monoidCachedTree p, monoidCachedTree q) -- parallel
in PairNode (val a `mappend` val b) a b
where
(p, q) = splitAt (length x `div` 2) x
-- we will build a max cached tree
instance Monoid Height where
mempty = minBound
mappend = max
-- implements left-to-right and right-to-left sweep on the monoid cached tree
process :: CachedTree Height -> Int -> Int -> Int
process (PairNode _ a b) left right = process a left (val b `max` right) + -- parallelism
process b (left `max` val a) right -- opportunity here
process (SingletonNode v) left right = ((left `min` right) `max` v) - v
process (NullNode _) left right = 0
monoidcached :: Histogram -> Int
monoidcached x = process (monoidCachedTree x) minBound minBound
-----------------------------------------------------------------------
-- The concise version
-- (NB. this is just like the sequential version)
(-->) = scanl1
(<--) = scanr1
concise :: Histogram -> Int
concise x = sum [ (left `min` right) - v | (v, left, right) <- zip3 x (max--> x) (max<-- x) ]
-----------------------------------------------------------------------
main :: IO ()
main = mapM_ print ([sequential, bitonic, monoidcached, concise] <*> pure guySteelesExample)
@Teggy
Copy link
Author

Teggy commented Feb 9, 2016

Deliberately adopts Guy's naming of identifiers and thus somewhat deviates from idiomatic Haskell.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment