Skip to content

Instantly share code, notes, and snippets.

@TempleProgramming
Last active July 26, 2021 14:00
Show Gist options
  • Save TempleProgramming/4350f84436f9954762617991cc529fec to your computer and use it in GitHub Desktop.
Save TempleProgramming/4350f84436f9954762617991cc529fec to your computer and use it in GitHub Desktop.
ZenithOS SHA-256 Generation
/* This implementation of SHA-256 was adapted from Brad Conte's
crypto-algorithms GitHub repository. */
#define SHA256_BLOCK_SIZE 32
class CSHA256_CTX
{
U8 data[64];
U32 datalen;
U64 bitlen;
U32 state[8];
};
U32 ROTLEFT(U32 a, U32 b)
{
return (((a) << (b)) | ((a) >> (32-(b))));
}
U32 ROTRIGHT(U32 a, U32 b)
{
return (((a) >> (b)) | ((a) << (32-(b))));
}
U32 CH(U32 x, U32 y, U32 z)
{
return (((x) & (y)) ^ (~(x) & (z)));
}
U32 MAJ(U32 x, U32 y, U32 z)
{
return (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)));
}
U32 EP0(U32 x)
{
return (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22));
}
U32 EP1(U32 x)
{
return (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25));
}
U32 SIG0(U32 x)
{
return (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3));
}
U32 SIG1(U32 x)
{
return (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10));
}
/**************************** VARIABLES *****************************/
U32 k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/*********************** FUNCTION DEFINITIONS ***********************/
U0 SHA256Transform(CSHA256_CTX *ctx, U8 *data)
{
U32 a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
U0 SHA256Init(CSHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
U0 SHA256Update(CSHA256_CTX *ctx, U8 *data, U64 len)
{
U32 i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
SHA256Transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
U0 SHA256Final(CSHA256_CTX *ctx, U8 *hash)
{
U32 i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
SHA256Transform(ctx, ctx->data);
MemSet(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
SHA256Transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}
U0 SHA256Generate(U8 *data, I64 datalen, U8 *hash)
{
CSHA256_CTX ctx;
SHA256Init(&ctx);
SHA256Update(&ctx, data, datalen);
SHA256Final(&ctx, hash);
}
U0 SHA256Print(U8 *hash)
{
"Hash: ";
I64 i;
for (i = 0; i < 32; i++)
{
"%02X", hash[i];
}
"\n";
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment