Created
September 2, 2018 06:51
-
-
Save TestSubjector/59ab7835320296269eccc6a6f6c2d2a1 to your computer and use it in GitHub Desktop.
Quick gist for two numerical methods to compute derivatives, mainly to show the error they generate (vs step size) as a plot
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import cmath | |
import matplotlib.pyplot as plt | |
def input_function(x): | |
return cmath.log(x) | |
def input_deravative_function(x): | |
return 1/x | |
def ctse(standard_input, delta_x): | |
return (input_function(complex(standard_input, delta_x)).imag)/delta_x | |
def main(): | |
standard_input = 5 | |
print("Start") | |
standard_output = input_deravative_function(standard_input) | |
print(standard_output) | |
x_range = np.logspace(-0.02, -14.4, num=500) | |
y_range = [] | |
for index in range(len(x_range)): | |
y_range.append(abs(input_deravative_function(standard_input) - ctse(standard_input, x_range[index]))) | |
# print(y_range) | |
plt.plot(x_range, y_range) | |
plt.xscale('log') | |
plt.xlabel('Img Step Size') | |
plt.ylabel('Error') | |
plt.show() | |
if __name__ == '__main__': | |
main() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import math | |
import matplotlib.pyplot as plt | |
def input_function(x): | |
return math.log(x) | |
def input_deravative_function(x): | |
return 1/x | |
def forward_difference(standard_input, delta_x): | |
return (input_function(standard_input + delta_x) - input_function(standard_input))/ delta_x | |
def main(): | |
standard_input = 5 | |
print("Start") | |
standard_output = input_deravative_function(standard_input) | |
print(standard_output) | |
x_range = np.logspace(-0.02, -14.4, num=500) | |
y_range = [] | |
for index in range(len(x_range)): | |
y_range.append(abs(input_deravative_function(standard_input) - forward_difference(standard_input, x_range[index]))) | |
# print(y_range) | |
plt.plot(x_range, y_range) | |
plt.xscale('log') | |
plt.xlabel('Step Size') | |
plt.ylabel('Error') | |
plt.show() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment