Last active
December 19, 2020 07:51
-
-
Save TheDhejavu/244bfe519f3ca83f86535d24bbc8c502 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import nltk | |
from nltk.corpus import stopwords | |
from nltk.tokenize import word_tokenize | |
from nltk.stem import PorterStemmer | |
from nltk.stem import LancasterStemmer | |
import rabin_karp | |
import numpy as np | |
from os.path import dirname, join | |
class PlagiarismChecker: | |
def __init__(self, file_a, file_b): | |
self.file_a = file_a | |
self.file_b = file_b | |
self.hash_table = {"a": [], "b": []} | |
self.k_gram = 5 | |
content_a = self.get_file_content(self.file_a) | |
content_b = self.get_file_content(self.file_b) | |
self.calculate_hash(content_a, "a") | |
self.calculate_hash(content_b, "b") | |
# calaculate hash value of the file content | |
# and add it to the document type hash table | |
def calculate_hash(self, content, doc_type): | |
text = self.prepare_content(content) | |
text = "".join(text) | |
text = rabin_karp.rolling_hash(text, self.k_gram) | |
for _ in range(len(content) - self.k_gram + 1): | |
self.hash_table[doc_type].append(text.hash) | |
if text.next_window() == False: | |
break | |
def get_rate(self): | |
return self.calaculate_plagiarism_rate(self.hash_table) | |
# calculate the plagiarism rate using the plagiarism rate formula | |
def calaculate_plagiarism_rate(self, hash_table): | |
th_a = len(hash_table["a"]) | |
th_b = len(hash_table["b"]) | |
a = hash_table["a"] | |
b = hash_table["b"] | |
sh = len(np.intersect1d(a, b)) | |
print(sh, a, b) | |
# Formular for plagiarism rate | |
# P = (2 * SH / THA * THB ) 100% | |
p = (float(2 * sh)/(th_a + th_b)) * 100 | |
return p | |
# get content from file | |
def get_file_content(self, filename): | |
file = open(filename, 'r+', encoding="utf-8") | |
return file.read() | |
# Prepare content by removing stopwords, steemming and tokenizing | |
def prepare_content(self, content): | |
# STOP WORDS | |
stop_words = set(stopwords.words('english')) | |
# TOKENIZE | |
word_tokens = word_tokenize(content) | |
filtered_content = [] | |
# STEMMING | |
porter = PorterStemmer() | |
for w in word_tokens: | |
if w not in stop_words: | |
w = w.lower() | |
word = porter.stem(w) | |
filtered_content.append(word) | |
return filtered_content | |
current_dir = dirname(__file__) | |
checker = PlagiarismChecker( | |
join(current_dir, "./document_a.txt"), | |
join(current_dir, "./document_b.txt") | |
) | |
print('The percentage of plagiarism held by both documents is {0}%'.format( | |
checker.get_rate())) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment