Created
March 23, 2016 09:20
-
-
Save TheSalarKhan/ee818fab5cd591ab9309 to your computer and use it in GitHub Desktop.
Object detection and painting.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import cv2 | |
from collections import deque | |
from operator import itemgetter | |
class BackGroundSubtractor: | |
# When constructing background subtractor, we | |
# take in two arguments: | |
# 1) alpha: The background learning factor, its value should | |
# be between 0 and 1. The higher the value, the more quickly | |
# your algorithm learns the changes in the background. Therefore, | |
# for a static background use a lower value, like 0.001. But if | |
# your background has moving trees and stuff, use a higher value, | |
# maybe start with 0.01. | |
# 2) firstFrame: This is the first frame from the video/webcam. | |
def __init__(self,alpha,firstFrame): | |
self.alpha = alpha | |
self.backGroundModel = firstFrame | |
self.lockModel = False | |
def getForeground(self,frame,threshold=(20,255)): | |
mask = self.getMask(frame,threshold) | |
fg = cv2.bitwise_and(frame,frame,mask = mask) | |
return fg | |
def lockBG(self): | |
self.lockModel = True | |
def lockBG(self): | |
self.lockModel = False | |
def getMask(self,frame,threshold): | |
# Learn the new frame only if the model is not locked | |
if self.lockModel is False: | |
# apply the background averaging formula: | |
# NEW_BACKGROUND = CURRENT_FRAME * ALPHA + OLD_BACKGROUND * (1 - APLHA) | |
self.backGroundModel = frame * self.alpha + self.backGroundModel * (1 - self.alpha) | |
# after the previous operation, the dtype of | |
# self.backGroundModel will be changed to a float type | |
# therefore we do not pass it to cv2.absdiff directly, | |
# instead we acquire a copy of it in the uint8 dtype | |
# and pass that to absdiff. | |
maskRGB = cv2.absdiff(self.backGroundModel.astype(np.uint8),frame) | |
mask = cv2.cvtColor(maskRGB,cv2.COLOR_BGR2GRAY) | |
# Apply thresholding on the background and display the resulting mask | |
_, mask = cv2.threshold(mask, threshold[0], threshold[1], cv2.THRESH_BINARY) | |
return mask | |
def getModel(self): | |
return self.backGroundModel.astype(np.uint8) | |
class ROI: | |
def __init__(self,track_window): | |
x = track_window[0] | |
y = track_window[1] | |
width = track_window[2] | |
height = track_window[3] | |
self.start = (x,y) | |
self.end = (x+width,y+height) | |
def drawBoundary(self,frame): | |
cv2.rectangle(frame,self.start,self.end,(0,255,0),1) | |
def getROI(self,frame): | |
return frame[ self.start[1]:self.end[1] , self.start[0]:self.end[0] ] | |
def denoise(frame): | |
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2HLS) | |
frame = cv2.medianBlur(frame,5) | |
frame = cv2.GaussianBlur(frame,(5,5),0) | |
# r,g,b = cv2.split(frame) | |
# r = cv2.equalizeHist(r) | |
# g = cv2.equalizeHist(g) | |
# b = cv2.equalizeHist(b) | |
# frame = cv2.merge((r,g,b)) | |
return frame | |
def findCenter(frame): | |
# Calculate the co-ordinates for the center pixel | |
y = frame.shape[0]/2 | |
x = frame.shape[1]/2 | |
return (x,y) | |
def getObject(frame,hsv): | |
lower = np.array([0,0,0], dtype=np.uint8) | |
upper = np.array([0,0,0], dtype=np.uint8) | |
lower[0] = hsv[0]-5 | |
# lower[1] = hsv[1]-10 | |
lower[1] = 0 | |
lower[2] = hsv[2]-40 | |
upper[0] = hsv[0]+5 | |
# upper[1] = hsv[1]+40 | |
upper[1] = 255 | |
upper[2] = hsv[2]+40 | |
return cv2.inRange(frame,lower,upper) | |
INK = None | |
pts = None | |
def drawLines(obj,frame): | |
global INK | |
global pts | |
if(INK == None): | |
INK = np.zeros([frame.shape[0],frame.shape[1]],dtype=np.uint8) | |
if(pts == None): | |
pts = deque(maxlen=100000) | |
_,contours,_ = cv2.findContours(obj,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) | |
# Nothing to do, if no contours were found | |
if(len(contours) == 0): | |
return | |
# get all areas and indexes | |
contourAreas = [(index,cv2.contourArea(cnt)) for index,cnt in enumerate(contours)] | |
# select the index having the greatest contour area. | |
ci = max(contourAreas,key=itemgetter(1))[0] | |
cnt = contours[ci] | |
x,y,w,h = cv2.boundingRect(cnt) | |
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,255),1) | |
if len(contours) > 0: | |
center = (x+(h/2),y+(w/2)) | |
# update the points queue | |
if(LOCKED is True and DRAW_PRESSED is True): | |
pts.appendleft(center) | |
# loop over the set of tracked points | |
for i in xrange(1, len(pts)): | |
# if either of the tracked points are None, ignore | |
# them | |
if pts[i - 1] is None or pts[i] is None: | |
continue | |
# otherwise, compute the thickness of the line andq | |
# draw the connecting lines | |
#thickness = float(np.sqrt(100000 / float(i + 1)) * 2.5) | |
if(LOCKED is True): | |
cv2.line(INK, pts[i - 1], pts[i], (255), 2) | |
# if(INK != None): | |
# cv2.imshow('INK',cv2.flip(INK,1)) | |
def getMedian(roi): | |
h,s,v = cv2.split(roi) | |
medianH = np.median(h) | |
medianS = np.median(s) | |
medianV = np.median(v) | |
return (medianH,medianS,medianV) | |
################################################################################################## | |
DRAW_PRESSED = True | |
LOCKED = False | |
center = (0,0) | |
HSV = (0,0,0) | |
# x, y, width, height | |
trackWindow = (0,0,0,0) | |
reigon1 = ROI(trackWindow) | |
cam = cv2.VideoCapture(1) | |
ret,frame = cam.read() | |
if ret is True: | |
center = findCenter(frame) | |
trackWindow = (center[1],center[0],15,15) | |
reigon1 = ROI(trackWindow) | |
backSubtractor = BackGroundSubtractor(0.01,denoise(frame)) | |
backSubtractor.lockModel = True | |
run = True | |
else: | |
run = False | |
while(run): | |
# Read a frame from the camera | |
ret,fr = cam.read() | |
frame = denoise(fr.copy()) | |
# If the frame was properly read. | |
if ret is True: | |
# get the foreground | |
fg = backSubtractor.getForeground(frame,(25,255)) | |
# convert to hsv | |
# fgHSV = cv2.cvtColor(fg,cv2.COLOR_BGR2HLS) | |
# fgHSV = fg | |
if not LOCKED: | |
# Convert the frame to HSV | |
# frameHSV = cv2.cvtColor(frame,cv2.COLOR_BGR2HLS) | |
# Calculate the mean HSV of ROI | |
# HSV = cv2.mean(reigon1.getROI(frameHSV)) | |
HSV = getMedian(reigon1.getROI(frame)) | |
reigon1.drawBoundary(fr) | |
obj = getObject(fg,HSV) | |
obj = cv2.erode(obj,np.ones((5,5),np.uint8),iterations = 1) | |
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7)) | |
cv2.filter2D(obj,-1,disc,obj) | |
fg = backSubtractor.getForeground(frame) | |
drawLines(obj.copy(),fr) | |
global INK | |
if INK != None: | |
fr[:,:,2] = cv2.bitwise_or(INK,fr[:,:,2]) | |
cv2.imshow('object',cv2.flip(obj,1)) | |
cv2.imshow('frame',cv2.flip(fr,1)) | |
cv2.imshow('foreground',cv2.flip(fg,1)) | |
key = cv2.waitKey(1) & 0xFF | |
if key == 27: | |
break | |
elif key == ord('l'): | |
LOCKED = True | |
backSubtractor = BackGroundSubtractor(0.01,frame) | |
elif key == ord('u'): | |
LOCKED = False | |
elif key == ord('b'): | |
# Toggle background averaging state | |
backSubtractor.lockModel = not backSubtractor.lockModel | |
if backSubtractor.lockModel is True: | |
print 'BG locked' | |
else: | |
print 'BG unlocked' | |
elif key == ord('c'): | |
pts = deque(maxlen=100000) | |
INK = None | |
if key == ord('d'): | |
DRAW_PRESSED = True | |
else: | |
DRAW_PRESSED = False | |
pts = None | |
else: | |
break | |
cam.release() | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I am getting error as
Can you please let me know how to fixt it?