Last active
August 25, 2024 18:50
-
-
Save Thell/acff85705ed790b4362579b42803e0f6 to your computer and use it in GitHub Desktop.
HiGHS Log Plotter
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import re | |
import matplotlib.pyplot as plt | |
import numpy as np | |
def parse_highs_log(log_file_path): | |
last_full_entry = [] | |
current_entry = [] | |
found_solution = False | |
with open(log_file_path, "r") as f: | |
for line in f: | |
if "Running HiGHS" in line: | |
if found_solution: | |
last_full_entry = current_entry | |
current_entry = [line] | |
found_solution = False | |
else: | |
current_entry.append(line) | |
if "Writing the solution to" in line: | |
found_solution = True | |
if not last_full_entry: | |
last_full_entry = current_entry | |
if not last_full_entry: | |
return None, None, None, None, None, None | |
time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values = ( | |
[], | |
[], | |
[], | |
[], | |
[], | |
[], | |
) | |
for line in last_full_entry: | |
match = re.search(r"\dk?\s+\d+\.\ds$", line) | |
if not match: | |
continue | |
tokens = line.split() | |
if len(tokens) == 13: | |
tokens = tokens[1:] | |
assert len(tokens) == 12, f"{line}" | |
in_queue_values.append(float(tokens[1])) # InQueue | |
expl_values.append(float(tokens[3].replace("%", ""))) # Expl.% | |
best_bound_values.append(float(tokens[4].replace("inf", "nan"))) # Best Bound | |
best_sol_values.append(float(tokens[5].replace("inf", "nan"))) # Best Sol | |
gap_values.append( | |
float(tokens[6].replace("%", "").replace("inf", "nan").replace("Large", "nan")) | |
) # Gap% | |
time_values.append(float(tokens[11].replace("s", ""))) # Time | |
return time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values | |
def plot_highs_log( | |
time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values | |
): | |
fig, ax1 = plt.subplots(figsize=(10, 6)) | |
# Plot Objective Bounds | |
ax1.plot(time_values, best_bound_values, label="Best Bound", color="blue") | |
ax1.plot(time_values, best_sol_values, label="Best Solution", color="green") | |
ax1.set_xlabel("Time (seconds)") | |
ax1.set_ylabel("Objective Bounds", color="blue", labelpad=15) | |
ax1.tick_params(axis="y", labelcolor="blue") | |
# Limit y-axis to the range between min and max of the non-NaN values | |
valid_gap_index = next(i for i, gap in enumerate(gap_values) if not np.isnan(gap)) | |
min_y = min(best_bound_values[valid_gap_index], best_sol_values[valid_gap_index]) | |
max_y = max(best_bound_values[valid_gap_index], best_sol_values[valid_gap_index]) | |
padding = (max_y - min_y) * 0.1 | |
ax1.set_ylim(min_y - padding, max_y + padding) | |
# Add second y-axis for InQueue values | |
ax2 = ax1.twinx() | |
ax2.plot(time_values, in_queue_values, label="InQueue", color="red") | |
ax2.set_ylabel("InQueue", color="red", loc="top", labelpad=12) | |
ax2.yaxis.label.set_rotation(0) | |
ax2.tick_params(axis="y", labelcolor="red") | |
# Add third y-axis for Explored % values (scaled) | |
ax3 = ax1.twinx() | |
ax3.spines["right"].set_position(("outward", 50)) | |
ax3.plot(time_values, expl_values, label="Expl.%", color="purple") | |
ax3.set_ylabel("Expl.%", color="purple", loc="top", labelpad=10) | |
ax3.yaxis.label.set_rotation(0) | |
ax3.tick_params(axis="y", labelcolor="purple") | |
# Add fourth y-axis for Gap % values (scaled) | |
ax4 = ax1.twinx() | |
ax4.spines["right"].set_position(("outward", 90)) | |
ax4.plot(time_values, gap_values, label="Gap.%", color="orange") | |
ax4.set_ylabel("Gap.%", color="orange", loc="top", labelpad=22) | |
ax4.yaxis.label.set_rotation(0) | |
ax4.tick_params(axis="y", labelcolor="orange") | |
# Plot vertical hash lines where Best Solution changes | |
for i in range(1, len(best_sol_values)): | |
if best_sol_values[i] != best_sol_values[i - 1]: # Change detected | |
ax1.axvline(x=time_values[i], color="grey", linestyle="--", linewidth=0.5) | |
# Shift plot area left to make room on the right for the three y-axis labels. | |
fig.subplots_adjust(left=0.08, right=0.85) | |
# Set up legend | |
fig.legend(loc="upper center", ncols=5) | |
# Show plot | |
plt.title("HiGHS MIP Log Analysis") | |
plt.show() | |
log_file_path = "/path/to/your/logfile.log" | |
time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values = ( | |
parse_highs_log(log_file_path) | |
) | |
plot_highs_log( | |
time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Update comment lines for gap%