Skip to content

Instantly share code, notes, and snippets.

@Thell
Last active August 25, 2024 18:50
Show Gist options
  • Save Thell/acff85705ed790b4362579b42803e0f6 to your computer and use it in GitHub Desktop.
Save Thell/acff85705ed790b4362579b42803e0f6 to your computer and use it in GitHub Desktop.
HiGHS Log Plotter
import re
import matplotlib.pyplot as plt
import numpy as np
def parse_highs_log(log_file_path):
last_full_entry = []
current_entry = []
found_solution = False
with open(log_file_path, "r") as f:
for line in f:
if "Running HiGHS" in line:
if found_solution:
last_full_entry = current_entry
current_entry = [line]
found_solution = False
else:
current_entry.append(line)
if "Writing the solution to" in line:
found_solution = True
if not last_full_entry:
last_full_entry = current_entry
if not last_full_entry:
return None, None, None, None, None, None
time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values = (
[],
[],
[],
[],
[],
[],
)
for line in last_full_entry:
match = re.search(r"\dk?\s+\d+\.\ds$", line)
if not match:
continue
tokens = line.split()
if len(tokens) == 13:
tokens = tokens[1:]
assert len(tokens) == 12, f"{line}"
in_queue_values.append(float(tokens[1])) # InQueue
expl_values.append(float(tokens[3].replace("%", ""))) # Expl.%
best_bound_values.append(float(tokens[4].replace("inf", "nan"))) # Best Bound
best_sol_values.append(float(tokens[5].replace("inf", "nan"))) # Best Sol
gap_values.append(
float(tokens[6].replace("%", "").replace("inf", "nan").replace("Large", "nan"))
) # Gap%
time_values.append(float(tokens[11].replace("s", ""))) # Time
return time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values
def plot_highs_log(
time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values
):
fig, ax1 = plt.subplots(figsize=(10, 6))
# Plot Objective Bounds
ax1.plot(time_values, best_bound_values, label="Best Bound", color="blue")
ax1.plot(time_values, best_sol_values, label="Best Solution", color="green")
ax1.set_xlabel("Time (seconds)")
ax1.set_ylabel("Objective Bounds", color="blue", labelpad=15)
ax1.tick_params(axis="y", labelcolor="blue")
# Limit y-axis to the range between min and max of the non-NaN values
valid_gap_index = next(i for i, gap in enumerate(gap_values) if not np.isnan(gap))
min_y = min(best_bound_values[valid_gap_index], best_sol_values[valid_gap_index])
max_y = max(best_bound_values[valid_gap_index], best_sol_values[valid_gap_index])
padding = (max_y - min_y) * 0.1
ax1.set_ylim(min_y - padding, max_y + padding)
# Add second y-axis for InQueue values
ax2 = ax1.twinx()
ax2.plot(time_values, in_queue_values, label="InQueue", color="red")
ax2.set_ylabel("InQueue", color="red", loc="top", labelpad=12)
ax2.yaxis.label.set_rotation(0)
ax2.tick_params(axis="y", labelcolor="red")
# Add third y-axis for Explored % values (scaled)
ax3 = ax1.twinx()
ax3.spines["right"].set_position(("outward", 50))
ax3.plot(time_values, expl_values, label="Expl.%", color="purple")
ax3.set_ylabel("Expl.%", color="purple", loc="top", labelpad=10)
ax3.yaxis.label.set_rotation(0)
ax3.tick_params(axis="y", labelcolor="purple")
# Add fourth y-axis for Gap % values (scaled)
ax4 = ax1.twinx()
ax4.spines["right"].set_position(("outward", 90))
ax4.plot(time_values, gap_values, label="Gap.%", color="orange")
ax4.set_ylabel("Gap.%", color="orange", loc="top", labelpad=22)
ax4.yaxis.label.set_rotation(0)
ax4.tick_params(axis="y", labelcolor="orange")
# Plot vertical hash lines where Best Solution changes
for i in range(1, len(best_sol_values)):
if best_sol_values[i] != best_sol_values[i - 1]: # Change detected
ax1.axvline(x=time_values[i], color="grey", linestyle="--", linewidth=0.5)
# Shift plot area left to make room on the right for the three y-axis labels.
fig.subplots_adjust(left=0.08, right=0.85)
# Set up legend
fig.legend(loc="upper center", ncols=5)
# Show plot
plt.title("HiGHS MIP Log Analysis")
plt.show()
log_file_path = "/path/to/your/logfile.log"
time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values = (
parse_highs_log(log_file_path)
)
plot_highs_log(
time_values, best_bound_values, best_sol_values, in_queue_values, expl_values, gap_values
)
@Thell
Copy link
Author

Thell commented Aug 25, 2024

Update comment lines for gap%

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment