Last active
August 22, 2025 15:49
-
-
Save ThomasParistech/8dc6de09701955ca1a46bd5c65182089 to your computer and use it in GitHub Desktop.
Tilt/Pan a 360 image
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
# Load input 360 image | |
img = cv2.imread("my_360_image.png") | |
h, w = img.shape[:2] | |
# Select arbitrary rotation angles | |
d_theta = 0.2 * np.pi | |
d_phi = 0.1 * np.pi | |
# Compute the transformation maps | |
x_grid, y_grid = np.meshgrid(0.5+np.arange(w), | |
0.5+np.arange(h), | |
indexing="xy") | |
theta_1 = (x_grid / w - 0.5) * 2*np.pi | |
phi_1 = (y_grid / h - 0.5) * np.pi | |
px = np.cos(phi_1)*np.sin(theta_1 - d_theta) | |
py = np.cos(d_phi)*np.sin(phi_1) - np.sin(d_phi)*np.cos(phi_1)*np.cos(theta_1-d_theta) | |
pz = np.sin(d_phi)*np.sin(phi_1) + np.cos(d_phi)*np.cos(phi_1)*np.cos(theta_1-d_theta) | |
phi_0 = np.arcsin(py) | |
theta_0 = np.arctan2(px, pz) | |
map_x = w * (0.5 + theta_0 / (2*np.pi)) | |
map_y = h * (0.5 + phi_0 / np.pi) | |
# Generate the transformed image using cv2.remap | |
map_x -= 0.5 # Opencv shift | |
map_y -= 0.5 | |
transformed_img = cv2.remap(img, | |
map_x.astype(np.float32), | |
map_y.astype(np.float32), | |
cv2.INTER_CUBIC, | |
borderMode=cv2.BORDER_WRAP) | |
# Display the results | |
cv2.imshow("Input image", img) | |
cv2.imshow("Transformed Image", transformed_img) | |
cv2.waitKey(0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment