Last active
July 30, 2017 13:13
-
-
Save TomAnthony/9b813d68ece7ce1f4daa394df963499c to your computer and use it in GitHub Desktop.
Linkage - Even Clustering?
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"from fastcluster import linkage\n", | |
"from scipy.spatial.distance import squareform\n", | |
"\n", | |
"distance_matrix = np.array([[0.0, .25, .25, .25],\n", | |
" [.25, 0.0, .25, .25],\n", | |
" [.25, .25, 0.0, .25],\n", | |
" [.25, .25, .25, 0.0]])\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0. , 0.25, 0.25, 0.25],\n", | |
" [ 0.25, 0. , 0.25, 0.25],\n", | |
" [ 0.25, 0.25, 0. , 0.25],\n", | |
" [ 0.25, 0.25, 0.25, 0. ]])" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"distance_matrix" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"compressed_distance_matrix = squareform(distance_matrix)\n", | |
"Z = linkage(compressed_distance_matrix, method=\"complete\", metric=\"cosine\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0. , 1. , 0.25, 2. ],\n", | |
" [ 2. , 4. , 0.25, 3. ],\n", | |
" [ 3. , 5. , 0.25, 4. ]])" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"Z" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Num desired clusters\n", | |
"k = 2\n", | |
"\n", | |
"# Count entries in the matrix\n", | |
"initial_count = len(distance_matrix[0])\n", | |
"\n", | |
"# Fill an array with indices from the matrix\n", | |
"c = [[i] for i in range(initial_count)]\n", | |
"# Now extend with empty entries for merging into\n", | |
"c.extend([[]]*(initial_count))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Loop the linkage matrix, making merges\n", | |
"# into new clusters until we have k clusters.\n", | |
"for i, block in enumerate(Z):\n", | |
" j = i + initial_count\n", | |
" a = int(block[0])\n", | |
" b = int(block[1])\n", | |
"\n", | |
" # don't cluster randomly.\n", | |
" if block[2] >= 1:\n", | |
" break\n", | |
"\n", | |
" # merge a and b into j\n", | |
" c[j] = c[a]\n", | |
" c[j].extend(c[b])\n", | |
" # empty a and b\n", | |
" c[a] = c[b] = []\n", | |
" \n", | |
" # count clusters and see if we have\n", | |
" # reached our target number\n", | |
" cluster_count = sum([min(len(x),1) for x in c])\n", | |
" if cluster_count <= k:\n", | |
" break" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[[3], [2, 0, 1]]" | |
] | |
}, | |
"execution_count": 37, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"clusters = [x for x in c if x]\n", | |
"clusters" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# I have 2 clusters of size 1 and 3, but I'd like 2 and 2\n", | |
"# More generally I want to cluster evenly where possible for larger arrays.\n", | |
"# If I have a small k it will then start combining those clusters (also evenly)." | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment