Created
November 14, 2025 20:03
-
-
Save TomAugspurger/d5b0d3b0e5765e448aa07a4fcc706171 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import rapidsmpf | |
| import pylibcudf as plc | |
| import pyarrow as pa | |
| import numpy as np | |
| import rmm.mr | |
| import rmm.pylibrmm.stream | |
| import rapidsmpf.communicator.single | |
| import rapidsmpf.shuffler | |
| import rapidsmpf.buffer.resource | |
| import rapidsmpf.buffer.buffer | |
| import rapidsmpf.rmm_resource_adaptor | |
| import rapidsmpf.statistics | |
| import rapidsmpf.progress_thread | |
| import rapidsmpf.integrations.cudf.partition | |
| import nvtx | |
| def make_table() -> plc.Table: | |
| return plc.Table.from_arrow( | |
| pa.Table.from_pydict({"a": (np.arange(10 * (1024 * 1024) // 8) % 12)}) | |
| ) | |
| def main(): | |
| opts = rapidsmpf.config.Options() | |
| comm = rapidsmpf.communicator.single.new_communicator(opts) | |
| stats = rapidsmpf.statistics.Statistics(enable=True) | |
| tables = [make_table() for _ in range(8)] | |
| streams = [rmm.pylibrmm.stream.Stream() for _ in range(len(tables))] | |
| mr = rapidsmpf.rmm_resource_adaptor.RmmResourceAdaptor( | |
| rmm.mr.CudaAsyncMemoryResource() | |
| ) | |
| br = rapidsmpf.buffer.resource.BufferResource( | |
| mr, | |
| memory_available={ | |
| rapidsmpf.buffer.buffer.MemoryType.DEVICE: rapidsmpf.buffer.resource.LimitAvailableMemory( | |
| mr, 1024 * 1024 | |
| ), | |
| }, | |
| ) | |
| progress_thread = rapidsmpf.progress_thread.ProgressThread(comm, stats) | |
| shuffler = rapidsmpf.shuffler.Shuffler( | |
| comm=comm, | |
| progress_thread=progress_thread, | |
| op_id=0, | |
| total_num_partitions=len(tables), | |
| br=br, | |
| statistics=stats, | |
| ) | |
| for i, (table, stream) in enumerate(zip(tables, streams)): | |
| partitioned_and_packed = ( | |
| rapidsmpf.integrations.cudf.partition.partition_and_pack( | |
| table, | |
| columns_to_hash=[0], | |
| num_partitions=len(tables), | |
| br=br, | |
| stream=stream, | |
| ) | |
| ) | |
| with nvtx.annotate("insert_chunks", payload=i): | |
| shuffler.insert_chunks(partitioned_and_packed) | |
| for i in range(len(tables)): | |
| shuffler.insert_finished(i) | |
| for i in range(len(tables)): | |
| shuffler.extract(i) | |
| shuffler.shutdown() | |
| print(stats.report()) | |
| if __name__ == "__main__": | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment