Created
June 8, 2018 21:00
-
-
Save TommyJerryMairo/f4d2427cccc9e40719d193cac6419aea to your computer and use it in GitHub Desktop.
Macro for Competitive Programming
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <functional> | |
#include <algorithm> | |
#include <iostream> | |
#include <fstream> | |
#include <sstream> | |
#include <iomanip> | |
#include <numeric> | |
#include <cstring> | |
#include <cassert> | |
#include <cstdio> | |
#include <string> | |
#include <vector> | |
#include <bitset> | |
#include <queue> | |
#include <stack> | |
#include <cmath> | |
#include <ctime> | |
#include <list> | |
#include <set> | |
#include <map> | |
using namespace std; | |
#define REP(i, n) for (int i=0;i<int(n);++i) | |
#define FOR(i, a, b) for (int i=int(a);i<int(b);++i) | |
#define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) | |
#define REP_1(i, n) for (int i=1;i<=int(n);++i) | |
#define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) | |
#define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) | |
#define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i) | |
#define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i) | |
#define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i) | |
#define REP_N(i, n) for (i=0;i<int(n);++i) | |
#define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) | |
#define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) | |
#define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i) | |
#define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i) | |
#define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i) | |
#define REP_1_N(i, n) for (i=1;i<=int(n);++i) | |
#define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) | |
#define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) | |
#define REP_C_N(i, n) for (n____=int(n),i=0;i<n____;++i) | |
#define FOR_C_N(i, a, b) for (b____=int(b),i=a;i<b____;++i) | |
#define DWN_C_N(i, b, a) for (a____=int(a),i=b-1;i>=a____;--i) | |
#define REP_1_C_N(i, n) for (n____=int(n),i=1;i<=n____;++i) | |
#define FOR_1_C_N(i, a, b) for (b____=int(b),i=a;i<=b____;++i) | |
#define DWN_1_C_N(i, b, a) for (a____=int(a),i=b;i>=a____;--i) | |
//#define ECH(it, A) for (typeof(A.begin()) it=A.begin(); it != A.end(); ++it) | |
#define ECH(it, A) for (__typeof(A.begin()) it=A.begin(); it != A.end(); ++it) | |
#define REP_S(it, str) for (char*it=str;*it;++it) | |
#define REP_G(it, u) for (int it=hd[u];it;it=suc[it]) | |
#define DO(n) for ( int ____n ## __line__ = n; ____n ## __line__ -- ; ) | |
#define REP_2(i, j, n, m) REP(i, n) REP(j, m) | |
#define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m) | |
#define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l) | |
#define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l) | |
#define ALL(A) A.begin(), A.end() | |
#define LLA(A) A.rbegin(), A.rend() | |
#define CPY(A, B) memcpy(A, B, sizeof(A)) | |
#define INS(A, P, B) A.insert(A.begin() + P, B) | |
#define ERS(A, P) A.erase(A.begin() + P) | |
#define BSC(A, X) find(ALL(A), X) // != A.end() | |
#define CTN(T, x) (T.find(x) != T.end()) | |
#define SZ(A) int(A.size()) | |
#define PB push_back | |
#define MP(A, B) make_pair(A, B) | |
#define PTT pair<T, T> | |
#define fi first | |
#define se second | |
#define Rush int T____; RD(T____); DO(T____) | |
#define Display(A, n, m) { \ | |
REP(i, n){ \ | |
REP(j, m) cout << A[i][j] << " "; \ | |
cout << endl; \ | |
} \ | |
} | |
#define Display_1(A, n, m) { \ | |
REP_1(i, n){ \ | |
REP_1(j, m) cout << A[i][j] << " "; \ | |
cout << endl; \ | |
} \ | |
} | |
#pragma comment(linker, "/STACK:36777216") | |
//#pragma GCC optimize ("O2") | |
#define Ruby system("ruby main.rb") | |
#define Haskell system("runghc main.hs") | |
#define Python system("python main.py") | |
#define Pascal system("fpc main.pas") | |
typedef long long LL; | |
//typedef long double DB; | |
typedef double DB; | |
typedef unsigned UINT; | |
typedef unsigned long long ULL; | |
typedef vector<int> VI; | |
typedef vector<char> VC; | |
typedef vector<string> VS; | |
typedef vector<LL> VL; | |
typedef vector<DB> VD; | |
typedef set<int> SI; | |
typedef set<string> SS; | |
typedef set<LL> SL; | |
typedef set<DB> SD; | |
typedef map<int, int> MII; | |
typedef map<string, int> MSI; | |
typedef map<LL, int> MLI; | |
typedef map<DB, int> MDI; | |
typedef pair<int, int> PII; | |
typedef pair<int, bool> PIB; | |
typedef pair<LL, LL> PLL; | |
typedef vector<PII> VII; | |
typedef vector<VI> VVI; | |
typedef vector<VII> VVII; | |
template<class T> inline T& RD(T &); | |
template<class T> inline void OT(const T &); | |
inline LL RD(){LL x; return RD(x);} | |
inline char& RC(char &c){scanf(" %c", &c); return c;} | |
inline char RC(){char c; return RC(c);} | |
//inline char& RC(char &c){c = getchar(); return c;} | |
//inline char RC(){return getchar();} | |
inline DB& RF(DB &x){scanf("%lf", &x); return x;} | |
inline DB RF(){DB x; return RF(x);} | |
inline char* RS(char *s){scanf("%s", s); return s;} | |
template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1){RD(x0), RD(x1); return x0;} | |
template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2); return x0;} | |
template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3); return x0;} | |
template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;} | |
template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1){OT(x0), OT(x1);} | |
template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2){OT(x0), OT(x1), OT(x2);} | |
template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);} | |
inline char& RC(char &a, char &b){RC(a), RC(b); return a;} | |
inline char& RC(char &a, char &b, char &c){RC(a), RC(b), RC(c); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d){RC(a), RC(b), RC(c), RC(d); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d, char &e){RC(a), RC(b), RC(c), RC(d), RC(e); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;} | |
inline DB& RF(DB &a, DB &b){RF(a), RF(b); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c){RF(a), RF(b), RF(c); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d){RF(a), RF(b), RF(c), RF(d); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e){RF(a), RF(b), RF(c), RF(d), RF(e); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;} | |
inline void RS(char *s1, char *s2){RS(s1), RS(s2);} | |
inline void RS(char *s1, char *s2, char *s3){RS(s1), RS(s2), RS(s3);} | |
template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));} | |
template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);} | |
template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);} | |
template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);} | |
template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));} | |
template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);} | |
template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x);} | |
template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);} | |
template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q){while (!Q.empty()) Q.pop();} | |
template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q){while (!Q.empty()) Q.pop();} | |
template<class T> inline void CLR(T &A){A.clear();} | |
template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);} | |
template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);} | |
template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);} | |
template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);} | |
template<class T> inline T& SRT(T &A){sort(ALL(A)); return A;} | |
template<class T, class C> inline T& SRT(T &A, C B){sort(ALL(A), B); return A;} | |
/** Add - On **/ | |
const int dx4[] = {-1, 0, 1, 0}; | |
const int dy4[] = {0, 1, 0, -1}; | |
const int dx8[] = {-1, 0, 1, 0 , -1 , -1 , 1 , 1}; | |
const int dy8[] = {0, 1, 0, -1 , -1 , 1 , -1 , 1}; | |
const int dxhorse[] = {-2 , -2 , -1 , -1 , 1 , 1 , 2 , 2}; | |
const int dyhorse[] = {1 , -1 , 2 , -2 , 2 ,-2 , 1 ,-1}; | |
const int MOD = 1000000007; | |
//int MOD = 99990001; | |
const int INF = 0x3f3f3f3f; | |
const LL INFF = 1LL << 60; | |
const DB EPS = 1e-9; | |
const DB OO = 1e15; | |
const DB PI = acos(-1.0); //M_PI; | |
// <<= ` 0. Daily Use ., | |
template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;} | |
template<class T> inline void checkMax(T &a,const T b){if (a<b) a=b;} | |
template<class T> inline void checkMin(T &a, T &b, const T x){checkMin(a, x), checkMin(b, x);} | |
template<class T> inline void checkMax(T &a, T &b, const T x){checkMax(a, x), checkMax(b, x);} | |
template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;} | |
template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;} | |
template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);} | |
template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);} | |
template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));} | |
template<class T> inline T max(T a, T b, T c, T d){return max(max(a, b), max(c, d));} | |
template<class T> inline T sqr(T a){return a*a;} | |
template<class T> inline T cub(T a){return a*a*a;} | |
inline int Ceil(int x, int y){return (x - 1) / y + 1;} | |
// <<= ` 1. Bitwise Operation ., | |
namespace BO{ | |
inline bool _1(int x, int i){return bool(x&1<<i);} | |
inline bool _1(LL x, int i){return bool(x&1LL<<i);} | |
inline LL _1(int i){return 1LL<<i;} | |
inline LL _U(int i){return _1(i) - 1;}; | |
inline int reverse_bits(int x){ | |
x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa); | |
x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc); | |
x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0); | |
x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00); | |
x = ((x >>16) & 0x0000ffff) | ((x <<16) & 0xffff0000); | |
return x; | |
} | |
inline LL reverse_bits(LL x){ | |
x = ((x >> 1) & 0x5555555555555555LL) | ((x << 1) & 0xaaaaaaaaaaaaaaaaLL); | |
x = ((x >> 2) & 0x3333333333333333LL) | ((x << 2) & 0xccccccccccccccccLL); | |
x = ((x >> 4) & 0x0f0f0f0f0f0f0f0fLL) | ((x << 4) & 0xf0f0f0f0f0f0f0f0LL); | |
x = ((x >> 8) & 0x00ff00ff00ff00ffLL) | ((x << 8) & 0xff00ff00ff00ff00LL); | |
x = ((x >>16) & 0x0000ffff0000ffffLL) | ((x <<16) & 0xffff0000ffff0000LL); | |
x = ((x >>32) & 0x00000000ffffffffLL) | ((x <<32) & 0xffffffff00000000LL); | |
return x; | |
} | |
template<class T> inline bool odd(T x){return x&1;} | |
template<class T> inline T low_bit(T x) {return x & -x;} | |
template<class T> inline T high_bit(T x) {T p = low_bit(x);while (p != x) x -= p, p = low_bit(x);return p;} | |
template<class T> inline T cover_bit(T x){T p = 1; while (p < x) p <<= 1;return p;} | |
inline int low_idx(int x){return __builtin_ffs(x);} | |
inline int low_idx(LL x){return __builtin_ffsll(x);} | |
inline int high_idx(int x){return low_idx(reverse_bits(x));} | |
inline int high_idx(LL x){return low_idx(reverse_bits(x));} | |
inline int clz(int x){return __builtin_clz(x);} | |
inline int clz(LL x){return __builtin_clzll(x);} | |
inline int ctz(int x){return __builtin_ctz(x);} | |
inline int ctz(LL x){return __builtin_ctzll(x);} | |
inline int parity(int x){return __builtin_parity(x);} | |
inline int parity(LL x){return __builtin_parityll(x);} | |
inline int lg2(int a){return 31 - __builtin_clz(a);} | |
inline int count_bits(int x){return __builtin_popcount(x);} | |
inline int count_bits(LL x){return __builtin_popcountll(x);} | |
} ;//using namespace BO; | |
// <<= ` 2. Number theory ., | |
namespace NT{ | |
inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;} | |
inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;} | |
inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;} | |
inline int dff(int a, int b){a -= b; if (a < 0) a += MOD; return a;} | |
inline void MUL(int &a, int b){a = (LL)a * b % MOD;} | |
inline int pdt(int a, int b){return (LL)a * b % MOD;} | |
inline int sum(int a, int b, int c){return sum(sum(a, b), c);} | |
inline int sum(int a, int b, int c, int d){return sum(sum(a, b), sum(c, d));} | |
inline int pdt(int a, int b, int c){return pdt(pdt(a, b), c);} | |
inline int pdt(int a, int b, int c, int d){return pdt(pdt(pdt(a, b), c), d);} | |
inline int pow(int a, LL b){ | |
int c(1); while (b){ | |
if (b&1) MUL(c, a); | |
MUL(a, a), b >>= 1; | |
} | |
return c; | |
} | |
template<class T> inline T pow(T a, LL b){ | |
T c(1); while (b){ | |
if (b&1) c *= a; | |
a *= a, b >>= 1; | |
} | |
return c; | |
} | |
inline int _I(int b){ | |
int a = MOD, x1 = 0, x2 = 1, q; | |
while (true){ | |
q = a / b, a %= b; | |
if (!a) return (x2 + MOD) % MOD; | |
DEC(x1, pdt(q, x2)); | |
q = b / a, b %= a; | |
if (!b) return (x1 + MOD) % MOD; | |
DEC(x2, pdt(q, x1)); | |
} | |
} | |
inline void DIA(int &a, int b){MUL(a, _I(b));} | |
inline int qtt(int a, int b){return pdt(a, _I(b));} | |
inline int phi(int n){ | |
int res = n; for (int i=2;sqr(i)<=n;++i) if (!(n%i)){ | |
DEC(res, qtt(res, i)); | |
do{n /= i;} while(!(n%i)); | |
} | |
if (n != 1) | |
DEC(res, qtt(res, n)); | |
return res; | |
} | |
template <class T> | |
T GCD(T a, T b) | |
{ | |
return b ? GCD(b, a % b) : a; | |
} | |
template <class T> | |
T extendGCD(T a, T b, T& x, T& y) | |
{ | |
if(!b) return x = 1, y = 0, a; | |
T res = extendGCD(b, a % b, x, y), tmp = x; | |
x = y, y = tmp - (a / b) * y; | |
return res; | |
} | |
template <class T> | |
inline T inv(T w , T M){ | |
if (M <= 0) return -1; | |
T x , y , d; | |
d = extendGCD(w , M , x , y); | |
if (d != 1) return -1; | |
x = ((x % M) + M) % M; | |
return x; | |
} | |
} ;//using namespace NT; | |
// <<= ' A. Random Event .. | |
namespace RNG{ | |
//srand((unsigned)time(NULL)); | |
inline unsigned int rand16(){return (bool(rand()&1) << 15) | rand();} | |
inline unsigned int rand32(){return (rand16() << 16) | rand16();} | |
inline ULL rand64(){return ((LL)rand32() << 32) | rand32();} | |
inline ULL random(LL l, LL r){return rand64() % (r - l) + l;} | |
int dice(){return rand() % 6;} | |
bool coin(){return bool(rand() % 2);} | |
} ;//using namespace RNG; | |
// <<= ' B. Clock | |
namespace CLOCK{ | |
DB s0, s1, rd, k, T; | |
inline DB getTime(){ | |
#ifdef LOCAL | |
return 1.0 * clock() / CLOCKS_PER_SEC; | |
#else | |
timeval tv; | |
gettimeofday(&tv, 0); | |
return tv.tv_sec + tv.tv_usec * 1e-6; | |
#endif | |
} | |
inline void st0(DB _T = 0.98){T = _T, s0 = getTime();} | |
inline void st1(DB _k = 1.618){k = _k, s1 = getTime();} | |
inline void ed1(){rd = getTime() - s1;} | |
inline DB elapsed(){return getTime() - s0;} | |
inline bool safe(){return elapsed() + rd * k < T;} | |
} //using namespace CLOCK; | |
// <<= ' C. Temp .. . | |
template<class T> PTT operator+(const PTT &p1, const PTT &p2) { | |
return PTT(p1.fi + p2.fi, p1.se + p2.se); | |
} | |
template<class T> PTT operator-(const PTT &p1, const PTT &p2) { | |
return PTT(p1.fi - p2.fi, p1.se - p2.se); | |
} | |
template<class T> PTT operator*(const PTT &lhs, T k){ | |
return PTT(lhs.fi * k, lhs.se * k); | |
} | |
namespace Math{ | |
typedef long long typec; | |
///Lib functions | |
typec GCD(typec a, typec b) | |
{ | |
return b ? GCD(b, a % b) : a; | |
} | |
typec extendGCD(typec a, typec b, typec& x, typec& y) | |
{ | |
if(!b) return x = 1, y = 0, a; | |
typec res = extendGCD(b, a % b, x, y), tmp = x; | |
x = y, y = tmp - (a / b) * y; | |
return res; | |
} | |
///for x^k | |
typec power(typec x, typec k) | |
{ | |
typec res = 1; | |
while(k) | |
{ | |
if(k&1) res *= x; | |
x *= x, k >>= 1; | |
} | |
return res; | |
} | |
///for x^k mod m | |
typec powerMod(typec x, typec k, typec m) | |
{ | |
typec res = 1; | |
while(x %= m, k) | |
{ | |
if(k&1) res *= x, res %= m; | |
x *= x, k >>=1; | |
} | |
return res; | |
} | |
/*************************************** | |
Inverse in mod p^t system | |
***************************************/ | |
typec inverse(typec a, typec p, typec t = 1) | |
{ | |
typec pt = power(p, t); | |
typec x, y; | |
y = extendGCD(a, pt, x, y); | |
return x < 0 ? x += pt : x; | |
} | |
/*************************************** | |
Linear congruence theorem | |
x = a (mod p) | |
x = b (mod q) | |
for gcd(p, q) = 1, 0 <= x < pq | |
***************************************/ | |
typec linearCongruence(typec a, typec b, typec p, typec q) | |
{ | |
typec x, y; | |
y = extendGCD(p, q, x, y); | |
while(b < a) b += q / y; | |
x *= b - a, x = p * x + a, x %= p * q; | |
if(x < 0) x += p * q; | |
return x; | |
} | |
/*************************************** | |
prime table | |
O(n) | |
***************************************/ | |
const int PRIMERANGE = 1000000; | |
int prime[PRIMERANGE + 1]; | |
int getPrime() | |
{ | |
memset (prime, 0, sizeof (int) * (PRIMERANGE + 1)); | |
for (int i = 2; i <= PRIMERANGE; i++) | |
{ | |
if (!prime[i]) prime[++prime[0]] = i; | |
for (int j = 1; j <= prime[0] && prime[j] <= PRIMERANGE / i; j++) | |
{ | |
prime[prime[j]*i] = 1; | |
if (i % prime[j] == 0) break; | |
} | |
} | |
return prime[0]; | |
} | |
/*************************************** | |
get factor of n | |
O(sqrt(n)) | |
factor[][0] is prime factor | |
factor[][1] is factor generated by this prime | |
factor[][2] is factor counter | |
need: Prime Table | |
***************************************/ | |
///you should init the prime table before | |
int factor[100][3], facCnt; | |
int getFactors(int x) | |
{ | |
facCnt = 0; | |
int tmp = x; | |
for(int i = 1; prime[i] <= tmp / prime[i]; i++) | |
{ | |
factor[facCnt][1] = 1, factor[facCnt][2] = 0; | |
if(tmp % prime[i] == 0) | |
factor[facCnt][0] = prime[i]; | |
while(tmp % prime[i] == 0) | |
factor[facCnt][2]++, factor[facCnt][1] *= prime[i], tmp /= prime[i]; | |
if(factor[facCnt][1] > 1) facCnt++; | |
} | |
if(tmp != 1) | |
factor[facCnt][0] = tmp, factor[facCnt][1] = tmp, factor[facCnt++][2] = 1; | |
return facCnt; | |
} | |
typec combinationModP(typec n, typec k, typec p) | |
{ | |
if(k > n) return 0; | |
if(n - k < k) k = n - k; | |
typec a = 1, b = 1, x, y; | |
int pcnt = 0; | |
for(int i = 1; i <= k; i++) | |
{ | |
x = n - i + 1, y = i; | |
while(x % p == 0) x /= p, pcnt++; | |
while(y % p == 0) y /= p, pcnt--; | |
x %= p, y %= p, a *= x, b *= y; | |
b %= p, a %= p; | |
} | |
if(pcnt) return 0; | |
extendGCD(b, p, x, y); | |
if(x < 0) x += p; | |
a *= x, a %= p; | |
return a; | |
} | |
};//using namespace Math; | |
// <<= ' 0. I/O Accelerator interface ., | |
namespace Geo{ | |
#define typec double | |
const typec eps=1e-8; | |
int dblcmp(double d){ | |
if (fabs(d)<eps)return 0; | |
return d>eps?1:-1; | |
} | |
int sgn(double a) {return a<-eps?-1:a>eps;} | |
inline double sqr(double x){return x*x;} | |
struct Point2D{ | |
typec x,y; | |
Point2D(){} | |
Point2D(typec _x,typec _y):x(_x),y(_y){}; | |
void input(){ | |
scanf("%lf%lf",&x,&y); | |
} | |
void output(){ | |
printf("%.2f %.2f\n",x,y); | |
} | |
bool operator==(Point2D a)const{ | |
return dblcmp(a.x-x)==0&&dblcmp(a.y-y)==0; | |
} | |
bool operator<(Point2D a)const{ | |
return dblcmp(a.x-x)==0?dblcmp(y-a.y)<0:x<a.x; | |
} | |
typec len(){ | |
return hypot(x,y); | |
} | |
typec len2(){ | |
return x*x+y*y; | |
} | |
Point2D operator + (const Point2D &A) const{ | |
return Point2D(x + A.x , y + A.y); | |
} | |
Point2D operator - (const Point2D &A) const{ | |
return Point2D(x - A.x , y - A.y); | |
} | |
Point2D operator * (const typec _x) const{ | |
return Point2D(x * _x , y * _x); | |
} | |
typec operator * (const Point2D &A) const{ | |
return x * A.x + y * A.y; | |
} | |
typec operator ^ (const Point2D &A) const{ | |
return x * A.y - y * A.x; | |
} | |
Point2D operator / (const typec _p) const{ | |
return Point2D(x / _p , y / _p); | |
} | |
typec distance(Point2D p){ | |
return hypot(x-p.x,y-p.y); | |
} | |
Point2D add(Point2D p){ | |
return Point2D(x+p.x,y+p.y); | |
} | |
Point2D sub(Point2D p){ | |
return Point2D(x-p.x,y-p.y); | |
} | |
Point2D mul(typec b){ | |
return Point2D(x*b,y*b); | |
} | |
Point2D div(typec b){ | |
return Point2D(x/b,y/b); | |
} | |
typec dot(Point2D p){ | |
return x*p.x+y*p.y; | |
} | |
typec det(Point2D p){ | |
return x*p.y-y*p.x; | |
} | |
typec rad(Point2D a,Point2D b){ | |
Point2D p=*this; | |
return fabs(atan2(fabs(a.sub(p).det(b.sub(p))),a.sub(p).dot(b.sub(p)))); | |
} | |
Point2D trunc(typec r){ | |
typec l=len(); | |
if (!dblcmp(l))return *this; | |
r/=l; | |
return Point2D(x*r,y*r); | |
} | |
Point2D rotleft(){ | |
return Point2D(-y,x); | |
} | |
Point2D rotright(){ | |
return Point2D(y,-x); | |
} | |
Point2D rotate(Point2D p,typec angle)//ÈÆµãpÄæÊ±ÕëÐýתangle½Ç¶È | |
{ | |
Point2D v=this->sub(p); | |
typec c=cos(angle),s=sin(angle); | |
return Point2D(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c); | |
} | |
}; | |
typec cross(Point2D a,Point2D b,Point2D c){ | |
return (b.sub(a)).det(c.sub(a)); | |
} | |
}using namespace Geo; | |
template<class T> inline T& RD(T &x){ | |
//cin >> x; | |
//scanf("%d", &x); | |
char c; for (c = getchar(); c < '0'; c = getchar()); x = c - '0'; for (c = getchar(); '0' <= c && c <= '9'; c = getchar()) x = x * 10 + c - '0'; | |
//char c; c = getchar(); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0'; | |
return x; | |
} | |
int ____Case; template<class T> inline void OT(const T &x){ | |
//if (x == -1) printf("Case %d: NO\n", ++____Case); | |
//else printf("Case %d: %d\n", ++____Case, x); | |
//printf("%I64d\n", x); | |
//printf("%.2lf\n", x); | |
printf("%d\n", x); | |
//cout << x << endl; | |
} | |
/* ......................................................................................... |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment