Created
November 2, 2019 11:23
-
-
Save Tony607/f50eb3a0cbad98fe4d74d60580de3fba to your computer and use it in GitHub Desktop.
Automatic Defect Inspection with End-to-End Deep Learning | DLology
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.keras.models import Model | |
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, Lambda, Conv2DTranspose, concatenate | |
def get_small_unet(): | |
inputs = Input((img_rows, img_cols, 1)) | |
inputs_norm = Lambda(lambda x: x/127.5 - 1.) | |
conv1 = Conv2D(16, (3, 3), activation='relu', padding='same')(inputs) | |
conv1 = Conv2D(16, (3, 3), activation='relu', padding='same')(conv1) | |
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) | |
conv2 = Conv2D(32, (3, 3), activation='relu', padding='same')(pool1) | |
conv2 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv2) | |
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) | |
conv3 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool2) | |
conv3 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv3) | |
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) | |
conv4 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool3) | |
conv4 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv4) | |
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) | |
conv5 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool4) | |
conv5 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv5) | |
up6 = concatenate([Conv2DTranspose(64, kernel_size=( | |
2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3) | |
conv6 = Conv2D(128, (3, 3), activation='relu', padding='same')(up6) | |
conv6 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv6) | |
up7 = concatenate([Conv2DTranspose(32, kernel_size=( | |
2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3) | |
conv7 = Conv2D(64, (3, 3), activation='relu', padding='same')(up7) | |
conv7 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv7) | |
up8 = concatenate([Conv2DTranspose(16, kernel_size=( | |
2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3) | |
conv8 = Conv2D(32, (3, 3), activation='relu', padding='same')(up8) | |
conv8 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv8) | |
up9 = concatenate([Conv2DTranspose(8, kernel_size=( | |
2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3) | |
conv9 = Conv2D(16, (3, 3), activation='relu', padding='same')(up9) | |
conv9 = Conv2D(16, (3, 3), activation='relu', padding='same')(conv9) | |
conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9) | |
model = Model(inputs=inputs, outputs=conv10) | |
return model | |
model = get_small_unet() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment