Last active
June 2, 2020 11:10
-
-
Save TonyLadson/9c9b908e395ca5bdd5fa9e6a4921d099 to your computer and use it in GitHub Desktop.
Sampling distribution of floods. See https://tonyladson.wordpress.com/2020/06/02/sampling-distribution-of-the-1-flood/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
#pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE) | |
# Probability of 1, 1% flood in 100 years | |
dbinom(1, size = 100, prob = 0.01, log = FALSE) | |
choose(100,1) *0.01^1*0.99^99 | |
# Probability of 5 or more | |
1-pbinom(4, size = 100, 0.01) | |
# Create data frame for plotting | |
sampling_dist <- expand_grid(num_events = 0:10, years = 100, event_prob = 0.01) | |
sampling_dist <- sampling_dist %>% | |
rowwise() %>% | |
mutate(prob_num = dbinom(x = num_events, size = years, prob = event_prob)) | |
p <- sampling_dist %>% | |
ggplot(aes(x = num_events, y = prob_num)) + | |
geom_col(fill = 'blue', colour = 'black') + | |
scale_x_continuous(name = 'Number of events', breaks = 0:10) + | |
scale_y_continuous(name = 'Probability of the number of events', limits = c(0, 0.4)) + | |
theme_gray(base_size = 7) | |
ggsave(file.path('../figures','Sampling_dist_1pc_100y.png'), p, width = 4, height = 3) | |
# Expected number of floods | |
# Sum x * Pr(x) | |
sampling_dist %>% | |
mutate(mean_component = num_events * prob_num) %>% | |
ungroup() %>% | |
dplyr::summarize(sum(mean_component), n = n()) | |
# or | |
100*0.01 | |
################## | |
# AEP = 2% | |
sampling_dist <- expand_grid(num_events = 0:10, years = 100, event_prob = 0.02) | |
sampling_dist <- sampling_dist %>% | |
rowwise() %>% | |
mutate(prob_num = dbinom(x = num_events, size = years, prob = event_prob)) | |
sampling_dist %>% | |
ggplot(aes(x = num_events, y = prob_num)) + | |
geom_col(fill = 'blue', colour = 'black') + | |
scale_x_continuous(name = 'Number of events', breaks = 0:10) + | |
scale_y_continuous(name = 'Probability of the number of events', limits = c(0, 0.4)) | |
p <- sampling_dist %>% | |
ggplot(aes(x = num_events, y = prob_num)) + | |
geom_col(fill = 'blue', colour = 'black') + | |
scale_x_continuous(name = 'Number of events', breaks = 0:10) + | |
scale_y_continuous(name = 'Probability of the number of events', limits = c(0, 0.4)) + | |
theme_gray(base_size = 7) | |
ggsave(file.path('../figures','Sampling_dist_2pc_100y.png'), p, width = 4, height = 3) | |
# ------------------------------------------------------------------------- | |
#Change in Risk bewteen a 1% and 2% flood | |
# Probability of 1 or more floods | |
# Comparing 2% AEP to 1% AEP | |
1-pbinom(0, size = 100, prob = 0.02, log = FALSE) #0.867 | |
1-pbinom(0, size = 100, prob = 0.01, log = FALSE) #0.633 | |
(1-pbinom(0, size = 100, prob = 0.02, log = FALSE))/(1-pbinom(0, size = 100, prob = 0.01, log = FALSE)) | |
# Probability of 5 or more floods | |
# Comparing 2% AEP to 1% AEP | |
(1-pbinom(4, size = 100, prob = 0.02, log = FALSE)) | |
(1-pbinom(4, size = 100, prob = 0.02, log = FALSE))/(1-pbinom(4, size = 100, prob = 0.01, log = FALSE)) | |
#14.8 | |
# Compare 1% with 0.05% | |
1-pbinom(0, size = 100, prob = 0.005, log = FALSE) #0.39 | |
1-pbinom(0, size = 100, prob = 0.01, log = FALSE) #0.633 | |
(1-pbinom(4, size = 100, prob = 0.005, log = FALSE)) | |
(1-pbinom(4, size = 100, prob = 0.005, log = FALSE))/(1-pbinom(4, size = 100, prob = 0.01, log = FALSE)) | |
1/((1-pbinom(4, size = 100, prob = 0.005, log = FALSE))/(1-pbinom(4, size = 100, prob = 0.01, log = FALSE))) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment