Created
March 30, 2023 08:15
-
-
Save TransMux/7a66e995062676cba2099ac7cd4c5c56 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
per_level_scale = 1.381912879967776 | |
log2_per_level_scale = np.log2(per_level_scale) | |
base_resolution = 16 | |
log2_hashmap_size = 14 | |
HashIn = np.load("./HashIn.npy") | |
HashOut = np.load("./HashOut.npy")[0:65536] | |
HashWeight = np.load("./HashWeight.npy") | |
HashWeight = HashWeight.reshape((-1,2)) | |
HashTable = {} | |
HTOffset = [0 for i in range(17)] | |
for i in range(16): | |
HTScale = np.exp2(i * log2_per_level_scale) * base_resolution - 1 | |
HTReso = np.ceil(HTScale) + 1 | |
HTSize = HTReso * HTReso * HTReso | |
if HTSize > 2**log2_hashmap_size: | |
HTSize = 2**log2_hashmap_size | |
if HTSize % 2 == 1: | |
HTSize = HTSize + 1 | |
HTOffset[i+1] = int(HTSize + HTOffset[i]) | |
HashTable[str(i)] = HashWeight[HTOffset[i]:HTOffset[i+1]] | |
print(HTOffset) | |
print(len(HashWeight)) | |
def HashInt(Coord: np.ndarray): | |
CoordInt = Coord.astype(np.int64) | |
CoordInt[0] = CoordInt[0] * 1 | |
CoordInt[1] = CoordInt[1] * 2654435761 | |
CoordInt[2] = CoordInt[2] * 805459861 | |
XORCoord = (CoordInt[0].astype(int)^CoordInt[1].astype(int)^CoordInt[2].astype(int)) | |
return XORCoord | |
def HashLocation(Coord: np.ndarray, Resolution: int, HashSize: int, Y: int, Z: int): | |
stride = 1 | |
index = 0 | |
for dim in range(0,3): | |
if stride > HashSize: | |
break | |
index += Coord[dim] * stride | |
stride *= Resolution | |
if HashSize < stride: | |
index = HashInt(Coord) | |
BeforeShift = int(index) % HashSize | |
FinalAddr = BeforeShift % (HashSize / 4) | |
if Y > 0: | |
FinalAddr = FinalAddr + HashSize / 4 | |
if Z > 0: | |
FinalAddr = FinalAddr + HashSize / 2 | |
return int(FinalAddr) | |
def HashFunc(Level: int, HashSize: int, Coord: np.ndarray, HashTable: np.ndarray): | |
LevelScale = np.exp2(Level * log2_per_level_scale) * base_resolution - 1 | |
Resolution = np.ceil(LevelScale) + 1 | |
Pos = Coord * LevelScale + 0.5 | |
PosGrid = np.floor(Pos) | |
Pos = Pos - PosGrid | |
Feature = np.zeros((1,2)) | |
for idx in range(0,8): | |
LocalPosGrid = np.zeros_like(Coord) | |
ZeroPosGrid = np.zeros_like(Coord) | |
weight = 1 | |
for dim in range(0,3): | |
if not idx & 1 << dim: | |
weight *= 1 - Pos[dim] | |
LocalPosGrid[dim] = PosGrid[dim] | |
ZeroPosGrid[dim] = 0 | |
else: | |
weight *= Pos[dim] | |
LocalPosGrid[dim] = PosGrid[dim] + 1 | |
ZeroPosGrid[dim] = 1 | |
HashIndex2Fetch = HashLocation(LocalPosGrid, Resolution, HashSize, ZeroPosGrid[1], ZeroPosGrid[2]) | |
FetchedFeature = HashTable[HashIndex2Fetch] | |
Feature += FetchedFeature * weight | |
return Feature | |
from tqdm import trange | |
HashOut_lsx = np.zeros((len(HashOut), 32)) | |
for i in trange(len(HashOut)): | |
for j in range(16): | |
HashOut_lsx[i][2*j:2*j+2] = HashFunc(j, HTOffset[j+1] - HTOffset[j], HashIn[i].transpose(), HashTable[str(j)]) | |
import warnings | |
warnings.filterwarnings("error") | |
HashOut_diff = np.zeros((len(HashOut), 32)) | |
HashDiffRela = np.zeros((1,32)) | |
HashDiffSW = np.zeros((1,32)) | |
ActiveCount = 0 | |
for i in range(65536): | |
if 0 in HashOut[i]: | |
continue | |
else: | |
try: | |
ActiveCount += 1 | |
HashDiffSW += np.divide(np.abs(HashOut_lsx[i] - HashOut[i]),HashOut[i]) | |
except RuntimeWarning: | |
a = 0 | |
HashDiffSW = HashDiffSW / ActiveCount | |
print(HashDiffSW) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment