Created
April 26, 2019 19:08
-
-
Save Tushar-N/7af1cc1f650b7df299cd95cf80b2a1c4 to your computer and use it in GitHub Desktop.
Save jpeg images as compressed binary data, instead of a dense (C, H, W) uint8 tensor.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import io | |
from PIL import Image | |
import numpy as np | |
# Dataset class for extracting binary data from images to store | |
class ImageDataset: | |
def __init__(self): | |
super(ImageDataset, self).__init__() | |
self.images = [] # some list of PIL images | |
def __getitem__(self, index): | |
img = self.images[index] | |
binary_data = io.BytesIO() | |
img.save(binary_data, 'jpeg') | |
return binary_data.getvalue() | |
def __len__(self): | |
return len(self.images) | |
import h5py | |
def make_h5(): | |
dset = ImageDataset() | |
loader = torch.utils.data.DataLoader(dset, batch_size=256, shuffle=False, num_workers=16) | |
hf = h5py.File('images.h5', 'w') | |
dset = hf.create_dataset('crops', (len(dset), ), dtype=h5py.special_dtype(vlen=np.dtype('uint8'))) | |
count = 0 | |
for crops in tqdm.tqdm(loader, total=len(loader)): | |
for crop in crops: | |
dset[count] = np.frombuffer(crop, dtype='uint8') | |
count += 1 | |
hf.close() | |
# Use the h5 to load images in the actual dataset class | |
class H5Dataset: | |
def __init__(self): | |
super(H5Dataset, self).__init__() | |
self.hf = None | |
self.num_images = 10000 # stored metadata | |
def __getitem__(self, index): | |
if self.hf is None: | |
self.hf = h5py.File('images.h5', 'r') | |
img = Image.open(io.BytesIO(self.hf[index])) | |
return img | |
def __len__(self): | |
return self.num_images |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment