Skip to content

Instantly share code, notes, and snippets.

@TutorialDoctor
Created January 1, 2020 19:04
Show Gist options
  • Save TutorialDoctor/c6a815e7d9f7f321879760122b182089 to your computer and use it in GitHub Desktop.
Save TutorialDoctor/c6a815e7d9f7f321879760122b182089 to your computer and use it in GitHub Desktop.
Summarize web pages given a URL
import bs4 as bs
import urllib.request
import re
import nltk
#Install beautifulsoup
#Article this is from:
#https://stackabuse.com/text-summarization-with-nltk-in-python/
#NLTK help:
#https://stackoverflow.com/questions/4867197/failed-loading-english-pickle-with-nltk-data-load
#`pip3 install nltk`
#`pip3 install beautifulsoup4`
#`pip3 install lxml`
scraped_data = urllib.request.urlopen('https://en.wikipedia.org/wiki/Christmas')
article = scraped_data.read()
parsed_article = bs.BeautifulSoup(article,'lxml')
paragraphs = parsed_article.find_all('p')
article_text = ""
for p in paragraphs:
article_text += p.text
# Removing Square Brackets and Extra Spaces
article_text = re.sub(r'\[[0-9]*\]', ' ', article_text)
article_text = re.sub(r'\s+', ' ', article_text)
# Removing special characters and digits
formatted_article_text = re.sub('[^a-zA-Z]', ' ', article_text )
formatted_article_text = re.sub(r'\s+', ' ', formatted_article_text)
sentence_list = nltk.sent_tokenize(article_text)
stopwords = nltk.corpus.stopwords.words('english')
word_frequencies = {}
for word in nltk.word_tokenize(formatted_article_text):
if word not in stopwords:
if word not in word_frequencies.keys():
word_frequencies[word] = 1
else:
word_frequencies[word] += 1
maximum_frequncy = max(word_frequencies.values())
for word in word_frequencies.keys():
word_frequencies[word] = (word_frequencies[word]/maximum_frequncy)
sentence_scores = {}
for sent in sentence_list:
for word in nltk.word_tokenize(sent.lower()):
if word in word_frequencies.keys():
if len(sent.split(' ')) < 30:
if sent not in sentence_scores.keys():
sentence_scores[sent] = word_frequencies[word]
else:
sentence_scores[sent] += word_frequencies[word]
import heapq
summary_sentences = heapq.nlargest(7, sentence_scores, key=sentence_scores.get)
summary = ' '.join(summary_sentences)
print(summary)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment