Last active
April 15, 2025 13:47
-
-
Save USMortality/17bb9ce18e756c54d434f0b4d0e3b4eb to your computer and use it in GitHub Desktop.
ASMR Excess vs Confounders Correlation [World]
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(readr) | |
library(GGally) | |
sf <- 2 | |
width <- 900 * sf | |
height <- 450 * sf | |
options(vsc.dev.args = list(width = width, height = height, res = 72 * sf)) | |
source(paste0( | |
"https://gist.githubusercontent.com/USMortality/", | |
"cf0dc23d0d5ca609539fe11c9c089fcc/raw/asmr_country_dataset.r" | |
)) | |
# Analysis | |
df2 <- df |> | |
filter(date == 2020) |> | |
select( | |
-iso3c, | |
-date, | |
-total_vaccinations_per_hundred, | |
-people_vaccinated_per_hundred, | |
-people_fully_vaccinated_per_hundred, | |
-total_boosters_per_hundred, | |
) | |
chart <- GGally::ggcorr(df2, geom = "blank", label = TRUE, hjust = 1) + | |
geom_point( | |
size = 10, aes(color = coefficient < 0, alpha = abs(coefficient) >= 0.4) | |
) + | |
scale_alpha_manual(values = c("TRUE" = 0.25, "FALSE" = 0)) + | |
guides(color = FALSE, alpha = FALSE) + | |
ggplot2::coord_cartesian(clip = "off") + | |
ggplot2::theme(plot.margin = ggplot2::unit(c(1, 0, 0, 2.5), "cm")) + | |
labs(title = "Correlation Matrix [2020]") | |
ggplot2::ggsave( | |
filename = "chart1.png", plot = chart, width = width, height = height, | |
units = "px", dpi = 72 * sf, device = grDevices::png, type = c("cairo") | |
) | |
# By Date | |
cor_by_date <- function(df) { | |
df |> | |
group_by(date) |> | |
summarize( | |
across(everything(), ~ cor(.x, asmr_who_ex_p, | |
use = "pairwise.complete.obs" | |
)) | |
) |> | |
tidyr::pivot_longer( | |
cols = -date, names_to = "variable", values_to = "correlation" | |
) |> | |
filter(variable != "asmr_who_ex_p") # Exclude self-correlation | |
} | |
# Create correlation bins | |
cor_results <- cor_by_date(df |> select(-iso3c)) |> | |
mutate(correlation_group = cut( | |
correlation, | |
breaks = c(-Inf, -0.4, 0.4, Inf), | |
labels = c("< -0.4", "-0.4 to 0.4", "> 0.4"), | |
include.lowest = TRUE | |
)) | |
# Plot the heatmap with the simplified grouped correlation and values | |
chart <- ggplot(cor_results, aes(x = date, y = variable, fill = correlation_group)) + | |
geom_tile() + | |
geom_text( | |
aes(label = sprintf("%.1f", correlation)), | |
size = 3, color = "black" | |
) + | |
scale_fill_manual(values = c( | |
"< -0.4" = "#1a9850", | |
"-0.4 to 0.4" = "white", | |
"> 0.4" = "#d73027" | |
)) + | |
theme_minimal() + | |
labs( | |
title = "Correlation of eASMR with other variables", | |
fill = "Correlation" | |
) | |
ggplot2::ggsave( | |
filename = "chart2.png", plot = chart, width = width, height = height, | |
units = "px", dpi = 72 * sf, device = grDevices::png, type = c("cairo") | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://www.mortality.watch/charts/list.html#asmr-excess-vs-confounders-correlation-world