Created
February 1, 2025 19:54
-
-
Save USMortality/1f656e0afbb5cece840b4571d9466ec1 to your computer and use it in GitHub Desktop.
chart_usa_cancer_year_asmr.r
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(readr) | |
library(tidyr) | |
library(ggplot2) | |
library(dplyr) | |
library(fable) | |
library(tsibble) | |
sf <- 2 | |
width <- 900 * sf | |
height <- 450 * sf | |
options(vsc.dev.args = list(width = width, height = height, res = 72 * sf)) | |
# Load population data | |
pop <- read_csv( | |
"https://s3.mortality.watch/data/population/usa/5y.csv", | |
col_types = "cccciil" | |
) |> | |
filter(iso3c == "USA") | |
# Function to load datasets | |
load_data <- function(url) { | |
read_delim(url, delim = "\t", col_types = cols(.default = "c")) |> | |
as_tibble() |> | |
select(`Month Code`, `Five-Year Age Groups Code`, `Deaths`) |> | |
setNames(c("date", "age_group", "deaths")) |> | |
mutate( | |
year = as.integer(substr(date, 1, 4)), | |
date = make_yearmonth(year = year, month = substr(date, 6, 7)), | |
deaths = as.integer(deaths) | |
) | |
} | |
# Prepare time series data | |
prepare_ts <- function(df1, df2) { | |
rbind(df1, df2) |> | |
arrange(age_group, date) |> | |
mutate( | |
age_group = case_when( | |
age_group == "1" ~ "0-4", | |
age_group == "1-4" ~ "0-4", | |
age_group == "85-89" ~ "85+", | |
age_group == "90-94" ~ "85+", | |
age_group == "95-99" ~ "85+", | |
age_group == "100+" ~ "85+", | |
.default = age_group | |
) | |
) |> | |
group_by(year, age_group) |> | |
summarize(deaths = sum(deaths), .groups = "drop") |> | |
inner_join(pop, by = join_by("year", "age_group")) |> | |
mutate( | |
age_group = factor(age_group, levels = c( | |
"0-4", "5-9", "10-14", "15-19", "20-24", "25-29", "30-34", | |
"35-39", "40-44", "45-49", "50-54", "55-59", "60-64", "65-69", | |
"70-74", "75-79", "80-84", "85+" | |
)), | |
mortality = deaths / population * 100000 | |
) |> | |
as_tsibble(index = year, key = age_group) |> | |
filter(year >= 2017) | |
} | |
# Age Standardized Rates | |
source(paste0( | |
"https://gist.githubusercontent.com/USMortality/", | |
"cbb314e8e29b2f5b5578483504dd0d9f/raw/standard_population.r" | |
)) | |
# UCOD | |
df1 <- load_data( | |
"https://apify.mortality.watch/cdc-wonder/month-5y-ucd-neoplasm.txt" | |
) | |
df2 <- load_data(paste0( | |
"https://apify.mortality.watch/cdc-wonder/", | |
"provisional-month-5y-ucd-neoplasm.txt" | |
)) |> filter(year > max(df1$year, na.rm = TRUE)) | |
ts <- prepare_ts(df1, df2) |> mutate(deaths = ifelse(is.na(deaths), 5, deaths)) | |
# Age Standardized | |
age_groups <- ts |> filter(!age_group %in% c("all", "NS", NA)) | |
std_pop <- get_usa2000_bins(unique(age_groups$age_group)) | |
ts <- ts |> | |
inner_join(std_pop) |> | |
mutate(mortality = mortality * weight) |> | |
as_tibble() |> | |
group_by(year) |> | |
summarize(mortality = sum(mortality, na.rm = TRUE)) |> | |
ungroup() |> | |
as_tsibble(index = year) | |
ts |> | |
filter(year < 2025) |> | |
ggplot(aes(x = year, y = mortality)) + | |
geom_col(fill = "steelblue", color = "black", width = 0.7) + | |
geom_text(aes(label = round(mortality, 1)), vjust = -0.5, size = 4) + | |
labs( | |
x = "Year", | |
y = "Age-Adjusted Rate per 100k", | |
title = "Cancer Age-Adjusted Mortality Rate [USA]", | |
subtitle = "Source: CDC Wonder", | |
caption = "Visualization: Your Name | Data: CDC Wonder" | |
) + | |
theme_minimal(base_size = 14) + | |
theme( | |
axis.text.x = element_text(angle = 45, hjust = 1), | |
plot.title = element_text(face = "bold", size = 16), | |
plot.subtitle = element_text(size = 12, color = "gray40"), | |
plot.caption = element_text(size = 10, color = "gray50"), | |
panel.grid.major.x = element_blank() | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment