Last active
October 25, 2024 00:11
-
-
Save USMortality/46a3eb1dd4c8515bb1f9e0045f490e26 to your computer and use it in GitHub Desktop.
Crude Mortality Rate by Age Group [Sweden]
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(httr) | |
library(readr) | |
library(tidyr) | |
library(ggplot2) | |
library(dplyr) | |
library(fable) | |
sf <- 2 | |
width <- 900 * sf | |
height <- 450 * sf | |
options(vsc.dev.args = list(width = width, height = height, res = 72 * sf)) | |
url <- "https://api.scb.se/OV0104/v1/doris/en/ssd/START/BE/BE0101/BE0101I/Dodstal" | |
json_query <- '{ | |
"query": [], | |
"response": { | |
"format": "csv" | |
} | |
}' | |
parse_age_groups <- function(df) { | |
df$age_group <- sub(" years", "", df$age_group) | |
df |> filter(!age_group %in% c("total")) | |
} | |
response <- POST(url, body = json_query, encode = "json", content_type_json()) | |
if (status_code(response) == 200) { | |
content <- content(response, as = "raw") | |
csv_text <- iconv(rawToChar(content), from = "Windows-1252", to = "UTF-8") | |
df <- read.csv(text = csv_text, stringsAsFactors = FALSE) |> as_tibble() | |
} else { | |
print(paste("Error:", status_code(response))) | |
} | |
col_names <- colnames(df) | |
new_col_names <- c(col_names[1], substr(col_names[2:length(col_names)], nchar(col_names[2:length(col_names)]) - 3, nchar(col_names[2:length(col_names)]))) | |
colnames(df) <- new_col_names | |
ts <- df |> | |
pivot_longer(2:ncol(df)) |> | |
setNames(c("age_group", "year", "mortality")) |> | |
parse_age_groups() |> | |
mutate( | |
year = as.integer(trimws(year)), | |
# Convert to factor | |
age_group = factor(age_group, | |
levels = c( | |
"0", "1-4", "5-9", "10-14", "15-19", "20-24", "25-29", "30-34", | |
"35-39", "40-44", "45-49", "50-54", "55-59", "60-64", "65-69", | |
"70-74", "75-79", "80-84", "85-89", "90+" | |
) | |
) | |
) |> | |
as_tsibble(index = year, key = age_group) |> | |
filter(year >= 2010) | |
# Fit a linear model by age_group for the years 2010 to 2020 | |
model <- ts |> | |
filter(year >= 2010 & year <= 2019) |> | |
model(lm = TSLM(mortality ~ year)) | |
# Get the fitted values for the pre-2020 period using augment() | |
fitted_values <- model |> | |
augment() |> | |
select(year, age_group, .fitted) | |
# Get the forecasted values with prediction intervals for the next 4 years | |
forecasts <- model |> | |
forecast(h = "5 years", level = 95) |> | |
mutate(hl = hilo(mortality, level = 95)) |> | |
unpack_hilo(cols = hl) |> | |
as_tibble() |> | |
select(year, age_group, .mean, hl_lower, hl_upper) | |
# Combine the fitted values with the original data for the pre-2020 period | |
ts_augmented <- ts |> left_join(fitted_values, by = c("year", "age_group")) | |
# Combine the forecast values with the dataset | |
ts_with_forecast <- ts_augmented |> | |
left_join(forecasts, by = c("year", "age_group")) | |
chart <- ggplot(ts_with_forecast, aes(x = year)) + | |
geom_line(aes(y = mortality), color = "red") + | |
geom_line(aes(y = .fitted), color = "black", linetype = "dashed") + | |
geom_line(aes(y = .mean), color = "black", linetype = "dashed") + | |
geom_ribbon(aes(ymin = `hl_lower`, ymax = `hl_upper`), | |
fill = "black", alpha = 0.2 | |
) + | |
labs( | |
x = "Year", y = "Mortality", | |
title = "Crude Mortality Rate by Age Group [Sweden]", | |
subtitle = paste(c( | |
"Baseline: Lin. Regr. 2010-2019", | |
"Source: scb.se" | |
), collapse = " · "), | |
color = "Year" | |
) + | |
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + | |
facet_wrap(vars(age_group), scales = "free") | |
ggplot2::ggsave( | |
filename = "chart1.png", plot = chart, width = width, height = height, | |
units = "px", dpi = 72 * sf, device = grDevices::png, type = c("cairo") | |
) | |
# Excess | |
excess <- ts_with_forecast |> | |
filter( | |
age_group %in% c( | |
"50-54", "55-59", "60-64", "65-69", "70-74", | |
"75-79", "80-84", "85-89", "90+" | |
), | |
year >= 2010 | |
) |> | |
mutate(excess = mortality / (ifelse(is.na(.mean), .fitted, .mean)) - 1) | |
chart <- ggplot(excess, aes(x = year)) + | |
geom_col(aes(y = excess), fill = "red") + | |
geom_text(aes(y = excess, label = scales::percent(excess, accuracy = 1)), | |
vjust = -0.5, size = 3 | |
) + | |
labs( | |
x = "Year", y = "Mortality", | |
title = "Relative Excess Mortality by Age Group [Sweden]", | |
subtitle = paste(c( | |
"Baseline: Lin. Regr. 2010-2019", | |
"Source: scb.se" | |
), collapse = " · "), | |
color = "Year" | |
) + | |
scale_y_continuous(labels = scales::percent_format()) + | |
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + | |
facet_wrap(vars(age_group)) | |
ggplot2::ggsave( | |
filename = "chart2.png", plot = chart, width = width, height = height, | |
units = "px", dpi = 72 * sf, device = grDevices::png, type = c("cairo") | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://www.mortality.watch/charts/list.html#crude-mortality-rate-by-age-group-sweden