Last active
April 4, 2025 20:34
-
-
Save USMortality/5ac48b554d04fa82235dd880dce7b9f0 to your computer and use it in GitHub Desktop.
Excess mortality: Deaths from all causes compared to projection [World]
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(readr) | |
library(dplyr) | |
library(ggplot2) | |
library(tsibble) | |
library(fable) | |
library(lubridate) | |
library(stringr) | |
sf <- 2 | |
width <- 540 * sf | |
height <- 540 * sf | |
options(vsc.dev.args = list(width = width, height = height, res = 72 * sf)) | |
# Get Excess Mortality from Mortality.Watch relative to a 3y prepandemic avg. | |
df <- read_csv("https://s3.mortality.watch/data/mortality/world_weekly.csv") |> | |
mutate(date = yearweek(date)) | |
df2 <- df |> | |
filter( | |
year(date) >= 2010, year(date) < 2023, | |
!str_starts(iso3c, "USA-"), | |
!str_starts(iso3c, "DEU-") | |
) | |
mortality <- df2 |> | |
group_by(iso3c) |> | |
filter( | |
type > 1, # Use Monthly or Weekly only | |
n_distinct(year(date)) == (2023 - 2010) | |
) |> | |
group_by(date) |> | |
summarize(deaths = sum(deaths), population = sum(population)) |> | |
mutate(cmr = deaths / population * 100000) |> | |
as_tsibble(index = date) | |
model <- mortality |> | |
filter(date >= make_yearweek(2010, 1) & date <= make_yearweek(2019, 52)) |> | |
model(lm = TSLM(cmr ~ trend() + season())) | |
# Get the fitted values for the pre-2020 period using augment() | |
fitted_values <- model |> | |
augment() |> | |
select(date, .fitted) | |
# Get the forecasted values with prediction intervals for 2020-2023 | |
forecasts <- model |> | |
forecast(h = "4 years", level = 95) |> | |
as_tibble() |> | |
select(date, .mean) | |
# Combine the fitted values with the original data for the pre-2020 period | |
ts_augmented <- mortality |> left_join(fitted_values, by = c("date")) | |
# Combine the forecast values with the dataset | |
ts_with_forecast <- ts_augmented |> | |
select(date, cmr, .fitted, population) |> | |
left_join(forecasts, by = c("date")) |> | |
mutate(.mean = ifelse(is.na(.mean), .fitted, .mean)) | |
# Calculate excess CMR relative to the expected mean (`cmr_ex_p`) | |
df_mortality <- ts_with_forecast |> | |
mutate( | |
date = date(date), | |
cmr_ex = cmr - .mean, | |
cmr_ex_p = cmr_ex / .mean, | |
deaths_ex = cmr_ex * population / 100000 | |
) |> | |
as_tibble() | |
# pandemic <- df_mortality |> filter(date > as.Date("2020-03-11")) | |
# sum(pandemic$deaths_ex) | |
# max(pandemic$population) | |
# pandemic |> | |
# as_tsibble(index = date) |> | |
# autoplot(.var = deaths_ex) | |
chart <- ggplot(data = df_mortality, aes(x = date)) + | |
# Ribbon for values above zero | |
geom_ribbon( | |
aes( | |
ymin = 0, ymax = ifelse(cmr_ex_p > 0, cmr_ex_p, 0), fill = "Above zero" | |
) | |
) + | |
# Ribbon for values below zero | |
geom_ribbon( | |
aes( | |
ymax = 0, ymin = ifelse(cmr_ex_p > 0, 0, cmr_ex_p), fill = "Below zero" | |
) | |
) + | |
geom_hline(yintercept = 0, linetype = "solid", color = "grey50") + | |
geom_vline( | |
xintercept = as.Date("2020-03-11"), linetype = "solid", | |
color = "#D9C00D", size = 1 | |
) + | |
geom_vline( | |
xintercept = as.Date("2020-12-11"), linetype = "solid", | |
color = "#0DD97B", size = 1 | |
) + | |
annotate("text", | |
x = as.Date("2020-03-11"), | |
y = max(df_mortality$cmr_ex_p, na.rm = TRUE), | |
label = "WHO Declares COVID-19 Pandemic", | |
hjust = 1.02, vjust = 1, color = "#D9C00D", | |
size = 5, fontface = "bold" | |
) + | |
annotate("text", | |
x = as.Date("2020-12-11"), | |
y = max(df_mortality$cmr_ex_p, na.rm = TRUE), | |
label = "Vaccinations", | |
hjust = -0.05, vjust = 1, color = "#0DD97B", | |
size = 5, fontface = "bold" | |
) + | |
scale_fill_manual( | |
values = c("Above zero" = "#D9280D", "Below zero" = "#2D0DD9"), | |
name = NULL | |
) + | |
labs( | |
title = | |
"Excess mortality: Deaths from all causes compared to projection [World]", | |
subtitle = paste("Baseline: 2010-'19 seasonal linear regression", | |
"Datasource: Mortality.Watch", | |
sep = " · " | |
), | |
caption = paste(length(unique(df2$iso3c)), "Countries included"), | |
x = "Week of Year", | |
y = "Excess Mortality" | |
) + | |
scale_x_date(date_breaks = "1 year", date_labels = "%Y") + | |
scale_y_continuous(labels = scales::percent_format()) + | |
theme_bw() + | |
theme( | |
axis.text.x = element_text(angle = 30, hjust = 0.5, vjust = 0.5), | |
plot.title = element_text(size = 14, face = "bold"), | |
plot.caption = element_text(size = 10), | |
legend.position = "none" | |
) | |
ggplot2::ggsave( | |
filename = "chart1.png", plot = chart, width = width, height = height, | |
units = "px", dpi = 72 * sf, device = grDevices::png, type = c("cairo") | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment