Last active
February 14, 2025 19:55
-
-
Save USMortality/66e9ce99f1f7e44f69dd9b024f1e91d4 to your computer and use it in GitHub Desktop.
Crude Mortality Rate by Age Group [USA]
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(readr) | |
library(tidyr) | |
library(ggplot2) | |
library(dplyr) | |
library(fable) | |
library(tsibble) | |
sf <- 2 | |
width <- 900 * sf | |
height <- 450 * sf | |
options(vsc.dev.args = list(width = width, height = height, res = 72 * sf)) | |
pop <- read_csv( | |
"https://s3.mortality.watch/data/population/usa/5y.csv", | |
col_types = "ccciil" | |
) |> | |
filter(iso3c == "USA") | |
df1 <- read_delim( | |
"https://apify.mortality.watch/cdc-wonder/month-5y.txt", | |
delim = "\t", col_types = cols(.default = "c") | |
) |> | |
as_tibble() |> | |
select(`Month Code`, `Five-Year Age Groups Code`, `Deaths`) |> | |
setNames(c("date", "age_group", "deaths")) |> | |
mutate( | |
year = as.integer(substr(date, 1, 4)), | |
date = make_yearmonth(year = year, month = substr(date, 6, 7)), | |
deaths = as.integer(deaths) | |
) | |
df2 <- read_delim( | |
"https://apify.mortality.watch/cdc-wonder/provisional-month-5y.txt", | |
delim = "\t", col_types = cols(.default = "c") | |
) |> | |
as_tibble() |> | |
select(`Month Code`, `Five-Year Age Groups Code`, `Deaths`) |> | |
setNames(c("date", "age_group", "deaths")) |> | |
mutate( | |
year = as.integer(substr(date, 1, 4)), | |
date = make_yearmonth(year = year, month = substr(date, 6, 7)), | |
deaths = as.integer(deaths) | |
) |> | |
filter(year > max(df1$year, na.rm = TRUE)) | |
ts <- rbind(df1, df2) |> | |
arrange(age_group, date) |> | |
filter(!is.na(deaths)) |> | |
mutate( | |
age_group = case_when( | |
age_group == "1" ~ "0-4", | |
age_group == "1-4" ~ "0-4", | |
age_group == "85-89" ~ "85+", | |
age_group == "90-94" ~ "85+", | |
age_group == "95-99" ~ "85+", | |
age_group == "100+" ~ "85+", | |
.default = age_group | |
) | |
) |> | |
group_by(year, date, age_group) |> | |
summarize(deaths = sum(deaths), .groups = "drop") |> | |
inner_join(pop, by = join_by("year", "age_group")) |> | |
mutate( | |
# Convert to factor | |
age_group = factor(age_group, | |
levels = c( | |
"0-4", "5-9", "10-14", "15-19", "20-24", "25-29", "30-34", | |
"35-39", "40-44", "45-49", "50-54", "55-59", "60-64", "65-69", | |
"70-74", "75-79", "80-84", "85+" | |
) | |
), | |
mortality = deaths / population * 100000 | |
) |> | |
as_tsibble(index = date, key = age_group) |> | |
filter(year >= 2017) | |
# Fit a linear model by age_group for the years 2010 to 2020 | |
model <- ts |> | |
filter(year >= 2017 & year <= 2019) |> | |
model(lm = TSLM(mortality ~ season())) | |
# Get the fitted values for the pre-2020 period using augment() | |
fitted_values <- model |> | |
augment() |> | |
select(date, age_group, .fitted) | |
# Get the forecasted values with prediction intervals for the next 4 years | |
forecasts <- model |> | |
forecast(h = "5 years", level = 95) |> | |
mutate(hl = hilo(mortality, level = 95)) |> | |
unpack_hilo(cols = hl) |> | |
as_tibble() |> | |
select(date, age_group, .mean, hl_lower, hl_upper) | |
# Combine the fitted values with the original data for the pre-2020 period | |
ts_augmented <- ts |> | |
left_join(fitted_values, by = c("date", "age_group")) | |
# Combine the forecast values with the dataset | |
ts_with_forecast <- ts_augmented |> | |
left_join(forecasts, by = c("date", "age_group")) |> | |
filter(date <= max(ts$date, na.rm = TRUE) - 2) | |
chart <- ggplot(ts_with_forecast, aes(x = date)) + | |
geom_line(aes(y = mortality), color = "red") + | |
geom_line(aes(y = .fitted), color = "black", linetype = "dotted") + | |
geom_line(aes(y = .mean), color = "black", linetype = "dotted") + | |
geom_ribbon(aes(ymin = `hl_lower`, ymax = `hl_upper`), | |
fill = "black", alpha = 0.2 | |
) + | |
labs( | |
x = "Year", y = "Mortality", | |
title = "Crude Mortality Rate by Age Group [USA]", | |
subtitle = paste(c( | |
"Baseline: Mean 2017-2019", | |
"Source: CDC Wonder" | |
), collapse = " · "), | |
color = "Year" | |
) + | |
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + | |
facet_wrap(vars(age_group), scales = "free") | |
ggplot2::ggsave( | |
filename = "chart1.png", plot = chart, width = width, height = height, | |
units = "px", dpi = 72 * sf, device = grDevices::png, type = c("cairo") | |
) | |
# Excess | |
excess <- ts_with_forecast |> | |
filter(year >= 2020) |> | |
mutate(excess = mortality / (ifelse(is.na(.mean), .fitted, .mean)) - 1) | |
chart <- ggplot(excess, aes(x = date)) + | |
geom_col(aes(y = excess), fill = "red") + | |
labs( | |
x = "Year", y = "Mortality", | |
title = "Relative Excess Mortality by Age Group [USA]", | |
subtitle = paste(c( | |
"Baseline: Mean 2017-2019", | |
"Source: CDC Wonder" | |
), collapse = " · "), | |
color = "Year" | |
) + | |
scale_y_continuous(labels = scales::percent_format()) + | |
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + | |
facet_wrap(vars(age_group)) | |
ggplot2::ggsave( | |
filename = "chart2.png", plot = chart, width = width, height = height, | |
units = "px", dpi = 72 * sf, device = grDevices::png, type = c("cairo") | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://www.mortality.watch/charts/list.html#crude-mortality-rate-by-age-group-usa