Last active
December 10, 2024 08:05
-
-
Save USMortality/733b36125b0f0212999a5fd976cea0d5 to your computer and use it in GitHub Desktop.
PEI Impfnebenwirkungen [Germany]
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(dplyr) | |
library(readxl) | |
url <- paste0( | |
"https://www.pei.de/SharedDocs/Downloads/DE/newsroom/dossiers/rohdaten-", | |
"sicherheitsberichte/download-xls-uaw-daten-2020-12-27-bis-2023-12-31", | |
".xlsx?__blob=publicationFile&v=5" | |
) | |
tempfile_path <- tempfile(fileext = ".xlsx") | |
download.file(url, tempfile_path, mode = "wb") # Use mode = "wb" for binary files | |
df <- read_xlsx(tempfile_path, skip = 1) |> | |
setNames(c( | |
"id", "year", "age_group", "sex", "vaxx_date", "manufacturer", "charge", | |
"date_adverse", "adverse_event" | |
)) |> | |
mutate( | |
year = as.integer(year), | |
vaxx_date = as.Date(vaxx_date, tryFormats = c("%d.%m.%Y")), | |
date_adverse = case_when( | |
date_adverse == "--.--.----" ~ NA, # Handle missing dates explicitly | |
TRUE ~ as.Date(date_adverse, format = "%d.%m.%Y") # Parse valid dates | |
), | |
sex = case_when( | |
sex == "männlich" ~ "m", | |
sex == "weiblich" ~ "w", | |
TRUE ~ "other" | |
), | |
age_group = case_when( | |
age_group == "18 - 59 Jahre" ~ "18-59", | |
age_group == "60 Jahre und älter" ~ "60+", | |
age_group == "leer" ~ "unknown", | |
age_group == "7 - 17 Jahre" ~ "7-17", | |
age_group == "k.A." ~ NA, | |
age_group == "2 - 6 Jahre" ~ "2-6", | |
age_group == "0 - 23 Monate" ~ "<2", | |
age_group == "12 - 17 Jahre" ~ "12-17", | |
age_group == "7 - 11 Jahre" ~ "7-11", | |
TRUE ~ "other" # Catch any undefined cases | |
), | |
manufacturer = case_when( | |
grepl("Comirnaty", manufacturer, ignore.case = TRUE) ~ "Pfizer/BioNTech", | |
grepl("Spikevax", manufacturer, ignore.case = TRUE) ~ "Moderna", | |
grepl("Jcovden", manufacturer, ignore.case = TRUE) ~ "Johnson & Johnson", | |
grepl("Vaxzevria", manufacturer, ignore.case = TRUE) ~ "AstraZeneca", | |
grepl("Corona Impfstoff", manufacturer, ignore.case = TRUE) ~ NA, | |
grepl("Nuvaxovid", manufacturer, ignore.case = TRUE) ~ "Novavax", | |
grepl("Valneva", manufacturer, ignore.case = TRUE) ~ "Valneva", | |
TRUE ~ NA | |
) | |
) | |
# write.csv(df, "/Users/ben/Downloads/germany_pei_vae.csv", row.names = FALSE) | |
# By Manufacturer | |
df |> | |
group_by(manufacturer) |> | |
summarize(n = n()) |> | |
arrange(desc(n)) | |
# By Cause | |
df |> | |
filter(adverse_event %in% c( | |
"Tod", | |
"Ploetzlicher Tod", | |
"Herztod", | |
"Hirntod", | |
"Ploetzlicher Herztod", | |
"Fetaler Tod", | |
"Tod eines fruehgeborenen Babys", | |
"Fetaler Tod" | |
)) |> | |
group_by(adverse_event) |> | |
summarize(n = n()) |> | |
arrange(adverse_event, n) | |
# Min/Max By Charge | |
a <- df |> filter(charge == "FE6975") | |
min(a$vaxx_date, na.rm = TRUE) | |
max(a$vaxx_date, na.rm = TRUE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment