Created
June 7, 2021 12:31
-
-
Save UditSinghParihar/6200bb38e31884e796f9bf89acab8fe2 to your computer and use it in GitHub Desktop.
Estimating logarithmic function using Neural Network
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import optim | |
import numpy as np | |
import math | |
def genData(): | |
Y = np.arange(-10, 10, 0.0001) | |
E = 2.71 | |
np.random.shuffle(Y) | |
X = E**Y | |
return X, Y | |
class logNN(nn.Module): | |
def __init__(self): | |
super(logNN, self).__init__() | |
self.W1 = nn.Linear(1, 1000) | |
self.W2 = nn.Linear(1000, 100) | |
self.W3 = nn.Linear(100, 1) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
z1 = self.W1(x) | |
a1 = self.relu(z1) | |
z2 = self.W2(a1) | |
a2 = self.relu(z2) | |
z3 = self.W3(a2) | |
return z3 | |
if __name__ == '__main__': | |
X, Y = genData() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
numbOfEpocs = 500 | |
miniBatch = 200 | |
XTorch = torch.tensor(X).float().view(-1, 1).to(device) | |
YTorch = torch.tensor(Y).float().view(-1, 1).to(device) | |
print(XTorch.shape) | |
model = logNN().to(device) | |
criterion = nn.MSELoss() | |
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.003) | |
for i in range(numbOfEpocs): | |
runningLoss = 0 | |
for j in range(0, X.shape[0]-miniBatch, miniBatch): | |
optimizer.zero_grad() | |
XBatch = XTorch[j: j+miniBatch, 0].view(-1, 1) | |
YBatch = YTorch[j: j+miniBatch, 0].view(-1, 1) | |
out = model(XBatch) | |
loss = criterion(out, YBatch) | |
loss.backward() | |
optimizer.step() | |
runningLoss += loss.item() | |
print("{} Loss: {}".format(i, runningLoss)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment