Last active
December 8, 2017 08:44
-
-
Save UlfNorell/102f8e59744de8a69f94b39f09f70c1d to your computer and use it in GitHub Desktop.
Equational reasoning with inequalities
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- In response to https://lists.chalmers.se/pipermail/agda/2017/009872.html | |
module _ where | |
open import Agda.Builtin.Equality | |
infix 0 case_of_ | |
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B | |
case x of f = f x | |
-- Equality reasoning -- | |
module InequalityReasoning {a b} {A : Set a} | |
(_<_ : A → A → Set b) | |
(_≤_ : A → A → Set b) | |
(leq-refl : ∀ {x y} → x ≡ y → x ≤ y) | |
(lt-trans : ∀ {x y z} → x < y → y < z → x < z) | |
(leq-trans : ∀ {x y z} → x ≤ y → y ≤ z → x ≤ z) | |
(lt/leq-trans : ∀ {x y z} → x < y → y ≤ z → x < z) | |
(leq/lt-trans : ∀ {x y z} → x ≤ y → y < z → x < z) | |
where | |
data _≲_ (x y : A) : Set b where | |
strict : x < y → x ≲ y | |
nonstrict : x ≤ y → x ≲ y | |
module _ {x y : A} where | |
⟦_⟧ : x ≲ y → Set b | |
⟦ strict _ ⟧ = x < y | |
⟦ nonstrict _ ⟧ = x ≤ y | |
infix -1 begin_ | |
begin_ : (p : x ≲ y) → ⟦ p ⟧ | |
begin strict p = p | |
begin nonstrict p = p | |
infixr 0 eqReasoningStep ltReasoningStep leqReasoningStep | |
infix 1 _∎ | |
syntax eqReasoningStep x q p = x ≡[ p ] q | |
eqReasoningStep : ∀ (x : A) {y z} → y ≲ z → x ≡ y → x ≲ z | |
x ≡[ x=y ] strict y<z = strict (case x=y of λ where refl → y<z) | |
x ≡[ x=y ] nonstrict y≤z = nonstrict (case x=y of λ where refl → y≤z) | |
-- ^ Note: don't match on the proof here, we need to decide strict vs nonstrict for neutral proofs | |
syntax ltReasoningStep x q p = x <[ p ] q | |
ltReasoningStep : ∀ (x : A) {y z} → y ≲ z → x < y → x ≲ z | |
x <[ x<y ] strict y<z = strict (lt-trans x<y y<z) | |
x <[ x<y ] nonstrict y≤z = strict (lt/leq-trans x<y y≤z) | |
syntax leqReasoningStep x q p = x ≤[ p ] q | |
leqReasoningStep : ∀ (x : A) {y z} → y ≲ z → x ≤ y → x ≲ z | |
x ≤[ x≤y ] strict y<z = strict (leq/lt-trans x≤y y<z) | |
x ≤[ x≤y ] nonstrict y≤z = nonstrict (leq-trans x≤y y≤z) | |
_∎ : ∀ (x : A) → x ≲ x | |
x ∎ = nonstrict (leq-refl refl) | |
-- Example ----------------------------------- | |
postulate | |
Bin : Set | |
0# 0bs1 0bs'1 bs1 bs'1 2bin : Bin | |
_*2 : Bin → Bin | |
_+_ _*_ : Bin → Bin → Bin | |
_<_ _≤_ : Bin → Bin → Set | |
leq-refl : ∀ {x y} → x ≡ y → x ≤ y | |
lt-trans : ∀ {x y z} → x < y → y < z → x < z | |
leq-trans : ∀ {x y z} → x ≤ y → y ≤ z → x ≤ z | |
lt/leq-trans : ∀ {x y z} → x < y → y ≤ z → x < z | |
leq/lt-trans : ∀ {x y z} → x ≤ y → y < z → x < z | |
infix 7 _*2 | |
infixl 7 _*_ | |
infixl 6 _+_ | |
infix 3 _<_ _≤_ | |
open InequalityReasoning _<_ _≤_ leq-refl lt-trans leq-trans lt/leq-trans leq/lt-trans | |
postulate | |
step-1 : 0bs1 ≡ bs1 * 2bin | |
step-2 : bs1 * 2bin < bs'1 * 2bin | |
step-3 : bs'1 * 2bin ≡ bs'1 *2 | |
step-4 : bs'1 *2 ≡ 0# + 0bs'1 | |
goal : 0bs1 < 0# + 0bs'1 | |
goal = | |
begin 0bs1 ≡[ step-1 ] | |
bs1 * 2bin <[ step-2 ] | |
bs'1 * 2bin ≡[ step-3 ] | |
bs'1 *2 ≡[ step-4 ] | |
0# + 0bs'1 | |
∎ | |
goal' : 0bs1 < 0# + 0bs'1 | |
goal' = | |
begin 0bs1 ≤[ leq-refl step-1 ] | |
bs1 * 2bin <[ step-2 ] | |
bs'1 * 2bin ≤[ leq-refl step-3 ] | |
bs'1 *2 ≡[ step-4 ] | |
0# + 0bs'1 | |
∎ | |
test : bs'1 * 2bin ≤ 0# + 0bs'1 | |
test = | |
begin bs'1 * 2bin ≤[ leq-refl step-3 ] | |
bs'1 *2 ≡[ step-4 ] | |
0# + 0bs'1 | |
∎ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment