Last active
August 29, 2015 14:10
-
-
Save Upabjojr/34f75ce115f1cf5a6afc to your computer and use it in GitHub Desktop.
Get gradient in another coordinate system by transformation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sympy import * | |
init_printing() | |
from sympy.diffgeom import * | |
r, x, y, z = symbols('r x y z', positive=True) | |
theta, phi = symbols('theta phi') | |
N = 3 | |
M = Manifold('M', N) | |
P = Patch('P', M) | |
rect = CoordSystem('rect', P, ['x', 'y', 'z']) | |
def get_grad(from_transformation, syms=['r','theta','phi']): | |
newcs = CoordSystem('newcs', P, syms) | |
newsymbols = symbols(' '.join(syms), positive=True) | |
newcs.connect_to(rect, newsymbols, from_transformation(*newsymbols), inverse=False) | |
#rect.connect_to(newcs, [x, y, z], to_transformation(x, y, z), inverse=False) | |
jac2to1 = newcs.jacobian(rect, newsymbols) | |
new_metric = simplify(jac2to1.inv() * jac2to1.inv().T) | |
scale_factors = [sqrt(new_metric[i,i]) for i in range(N)] | |
# get gradient | |
unscaled_grad = new_metric*Matrix([1]*N) # Matrix(newcs.base_vectors()) | |
grad = [simplify(unscaled_grad[i]/scale_factors[i])*newcs.base_vector(i) for i in range(N)] | |
return grad | |
# TO BE COMPLETED: get divergence | |
# following formula: (8.2.1) | |
sqrtabsg = simplify(sqrt((new_metric.det()))) | |
print sqrtabsg | |
def div(f, sqrtabsg): | |
print 1/sqrtabsg*f[0] | |
sqrtabsg = sqrtabsg.xreplace(dict(zip(newsymbols, newcs.coord_functions()))) | |
import pdb; pdb.set_trace() | |
return sqrtabsg * sum([newcs.base_vector(i)(1/sqrtabsg*f[i]) for i in range(N)]) | |
return grad # newcs.coord_functions(), grad, lambda f: div(f, sqrtabsg) | |
from_spherical = lambda r, theta, phi: (r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta)) | |
grad = get_grad(from_spherical) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment