Created
April 11, 2025 10:08
-
-
Save Vaibhavs10/f7d5bcc45587daad2645870d739a73b1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from transformers import AutoProcessor, Llama4ForConditionalGeneration | |
from transformers import Llama4ForConditionalGeneration, AutoTokenizer | |
import time | |
torch.manual_seed(1) | |
with open("very_long_context_prompt.txt", "r") as f: | |
very_long_text = "\n".join(f.readlines()) | |
full = len(very_long_text) | |
very_long_text = very_long_text[:full//50] | |
model_path = "/fsx/llama/converted/Llama-4-Scout-17B-16E-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
processor = AutoProcessor.from_pretrained(model_path) | |
model = Llama4ForConditionalGeneration.from_pretrained( | |
model_path, device_map="balanced", attn_implementation="flex_attention", torch_dtype=torch.bfloat16, | |
) | |
with torch.no_grad(): | |
input_ids =tokenizer([f"Write a summary of this: [{very_long_text}]. Sure, here is the summary:"],return_tensors="pt", padding_side="left").to(model.device) | |
start = time.time() | |
out = model.generate(**input_ids, max_new_tokens=20, do_sample=False, cache_implementation="offloaded_hybrid") | |
print(time.time()-start) # generated in 47 seconds | |
print(tokenizer.batch_decode(out[:,-20:])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment