Created
September 20, 2019 14:56
-
-
Save Venkatstatistics/3419c479922057641a139f6e9241fb32 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
from gensim.models.word2vec import Word2Vec | |
import gensim.downloader as api | |
#corpus = api.load('word2vec-google-news-300') | |
#corpus = api.load('glove-wiki-gigaword-100') | |
#model = api.load('glove-wiki-gigaword-100') | |
corpus = api.load('text8') # download the corpus and return it opened as an iterable | |
model = Word2Vec(corpus) # train a model from the corpus | |
model.most_similar("soccer",topn=3) | |
model.wv.most_similar(positive=['woman', 'king'], negative=['man']) | |
def analogy(x1, x2, y1): | |
result = model.wv.most_similar(positive=[y1, x2], negative=[x1]) | |
return result[0][0] | |
analogy('china', 'chinese', 'japan') | |
import matplotlib.pyplot as plt | |
import numpy as np | |
plt.style.use('ggplot') | |
from sklearn.decomposition import PCA | |
def display_pca_scatterplot(model, words=None, sample=0): | |
if words == None: | |
if sample > 0: | |
words = np.random.choice(list(model.vocab.keys()), sample) | |
else: | |
words = [ word for word in model.vocab ] | |
word_vectors = np.array([model[w] for w in words]) | |
twodim = PCA().fit_transform(word_vectors)[:,:2] | |
plt.figure(figsize=(6,6)) | |
plt.scatter(twodim[:,0], twodim[:,1], edgecolors='k', c='r') | |
for word, (x,y) in zip(words, twodim): | |
plt.text(x+0.05, y+0.05, word) | |
display_pca_scatterplot(model, | |
['coffee', 'tea', 'beer', 'wine','pizza', | |
'dog', 'horse', 'cat','football','tennis']) | |
display_pca_scatterplot(model, sample=100) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment