Last active
August 17, 2019 19:30
-
-
Save Venkatstatistics/6038622e08fc3bf68c55b8ab5079edd6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
start = time.time() | |
import csv | |
import sys | |
import pandas as pd | |
import numpy as np | |
from operator import itemgetter | |
import redis | |
REDIS_URL = "redis://localhost:6379/0" | |
r = redis.Redis(host='localhost', port=6379, db=0) | |
SIMILAR_COUNT = 3 #to set the number of similar words you want for each word | |
def read_biglist(): | |
biglist = pd.read_csv("big_Keywords.csv") | |
bigwords = biglist.keyword.tolist() | |
for token1 in bigwords: | |
r.lpush("big_keywords", token1) | |
def process(): | |
import en_vectors_web_lg | |
nlp = en_vectors_web_lg.load() | |
topicdf = pd.read_csv("small_Topics.csv", encoding='Latin-1') | |
topics = topicdf.Topic.tolist() | |
while True: | |
big_keyword = r.lpop('big_keywords').decode('utf-8') | |
if not big_keyword: | |
break | |
key = 'keyword_score###{}'.format(big_keyword) | |
for topic in topics: | |
score = nlp(str(big_keyword)).similarity(nlp(str(topic))) | |
elem = "{}###{}###{}".format(big_keyword, topic, score) | |
r.zadd(key, {elem: score}) | |
n_result = r.zrevrangebyscore(key, "+inf", "-inf", start=0, num=SIMILAR_COUNT) | |
result = [big_keyword] + [r.decode('utf-8').split('###')[1] for r in n_result] | |
r.lpush('results', ','.join(result)) | |
r.delete(key) | |
print(','.join(result)) | |
def dump(): | |
with open('results.csv', 'w') as f: | |
for key in r.lrange('results', 0, -1): | |
print(key) | |
f.write(key.decode('utf-8')) | |
f.write('\n') | |
if __name__== "__main__": | |
func_name = sys.argv[1] | |
functions = { | |
'read_biglist': read_biglist, | |
'process': process, | |
'dump': dump, | |
} | |
f = functions.get(func_name) | |
f() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment