Created
October 30, 2024 18:38
-
-
Save Vido/02724ccde0425d1d9a06376d3c95bfde to your computer and use it in GitHub Desktop.
RAG (Retrieval Augmented Generation) proof-of-concept based on LangChain and OpenAI's chatGPT. https://youtu.be/muFyRwfqVA0
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!doctype html> | |
<title>🐍📈 Python e Finanças - Retrieval Augmented Generation 🦜️🔗</title> | |
<body> | |
{% with messages = get_flashed_messages() %} | |
{% if messages %} | |
<ul class=flashes> | |
{% for message in messages %} | |
<li>{{ message }}</li> | |
{% endfor %} | |
</ul> | |
{% endif %} | |
{% endwith %} | |
<h1>🐍📈 Python e Finanças - Retrieval Augmented Generation 🦜️🔗</h1> | |
<a href='https://youtu.be/muFyRwfqVA0'>Watch the video on my YouTube Channel</a> | |
<h2>Ask a Question</h2> | |
<form method=post> | |
<input type=input name=question> | |
<input type=submit value=Ask!> | |
</form> | |
{% if answer %} | |
<h3>{{ question }}</h3> | |
<div id="content" style="width:50%">{{ answer }}</div> | |
{% endif %} | |
<script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script> | |
<script> | |
let original_text = document.getElementById('content').innerHTML | |
document.getElementById('content').innerHTML = | |
marked.parse(original_text); | |
</script> | |
<hr> | |
<h2>UI Endpoints:</h2> | |
<ul> | |
<li><a href='/'>Home -> Chat and Ask a Questions</a></li> | |
<li><a href='/embed'>Embed Documents into the VectorStore</a></li> | |
</ul> | |
</body> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
from flask import Flask, request, render_template, flash, redirect | |
app = Flask(__name__) | |
app.secret_key = 'super secret key' | |
app.config['SESSION_TYPE'] = 'filesystem' | |
VS, EMBEDDINGS = None, None | |
def init_vector_db(): | |
global VS, EMBEDDINGS | |
if EMBEDDINGS is None: | |
from gen_ai_hub.proxy.langchain.init_models import init_embedding_model | |
EMBEDDINGS = init_embedding_model('text-embedding-3-small') | |
if VS is None: | |
# https://python.langchain.com/docs/integrations/vectorstores/ | |
from langchain_core.vectorstores import InMemoryVectorStore | |
VS = InMemoryVectorStore(embedding=EMBEDDINGS) | |
return VS, EMBEDDINGS | |
@app.route('/embed', methods=['GET']) | |
def embed(): | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
print('Loading Embeddings and Vectorstore...') | |
init_vector_db() | |
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=100) | |
print('... DONE!') | |
uploaded_files = [x for x in Path('./upload').glob('**/*') if x.is_file()] | |
for filepath in uploaded_files: | |
documents = [] | |
loader = PyPDFLoader(filepath) | |
for n, doc_page in enumerate(loader.lazy_load()): | |
print(f'PDF to Text {filepath}, page {n}') | |
documents.append(doc_page) | |
text_chunks = text_splitter.split_documents(documents) | |
VS.add_documents(text_chunks) | |
print('Uploading DONE!') | |
flash(f'Files embeded into VectorStore! ✌️', 'success') | |
return redirect('/') | |
def get_llm(): | |
from gen_ai_hub.proxy.langchain.openai import ChatOpenAI | |
from gen_ai_hub.proxy.core.proxy_clients import get_proxy_client | |
proxy_client = get_proxy_client('gen-ai-hub') | |
return ChatOpenAI(proxy_model_name='gpt-4o-mini', proxy_client=proxy_client) | |
def get_prompt(): | |
from langchain.prompts import PromptTemplate | |
prompt_template = 'You are a helpful finance advisor. Context: {context} Question: {question}' | |
return PromptTemplate( | |
template = prompt_template, | |
input_variables=['context', 'question']) | |
@app.route('/', methods=['GET', 'POST']) | |
def chat(): | |
from langchain.chains import RetrievalQA | |
init_vector_db() | |
question, answer = '', '' | |
if request.method == 'POST': | |
# Retrival | |
question = request.form['question'] | |
retriever = VS.as_retriever(search_kwargs={'k': 5}) | |
# API Call | |
qa = RetrievalQA.from_chain_type(llm=get_llm(), | |
retriever=retriever, | |
chain_type='stuff', | |
chain_type_kwargs={'prompt': get_prompt()}) | |
ivk = qa.invoke(question) | |
question, answer = ivk['query'], ivk['result'] | |
return render_template('chat.html', | |
question=question, | |
answer=answer) | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=5000, debug=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment