Created
July 4, 2023 15:23
-
-
Save Vido/bd8ee82d4837a67e7b6b5ee30be0b7e3 to your computer and use it in GitHub Desktop.
Modelo de Markowitz com dados da Binance
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import scipy.optimize as sco | |
from quotes import tickers | |
df = pd.read_pickle("quotes.pkl") | |
logrets = np.log(df / df.shift(1)) | |
rmean = logrets.mean() * 365 | |
cov = logrets.cov() * 365 | |
def statistics(weights): | |
RE = np.sum(rmean * weights) | |
DP = np.sqrt(np.dot(weights.T, np.dot(cov, weights))) | |
return DP, RE | |
n = len(tickers) | |
cons = ({'type': 'eq', 'fun': lambda x: np.sum(x)-1}) | |
bnds = tuple((0, 1) for x in range(n)) | |
chute = [0.4, 0.4, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0] | |
def funcao_objetivo(weights): | |
DP, RE = statistics(weights) | |
return DP/RE # Invertido (minimize) | |
opts = sco.minimize(funcao_objetivo, chute, method='SLSQP', bounds=bnds, constraints=cons) | |
plt.pie(opts.x.round(2), explode=n*[1/n], labels=tickers) | |
plt.legend(tickers, loc='best') | |
plt.show() | |
ponderacao = n * [1/n] | |
plt.pie(ponderacao, explode=n*[1/n], labels=tickers) | |
plt.legend(tickers, loc='best') | |
plt.show() | |
DP1, RE1 = statistics(opts.x) | |
DP2, RE2 = statistics(np.array(ponderacao)) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
from datetime import datetime | |
import pandas as pd | |
from decouple import config | |
from binance.client import Client | |
import matplotlib.pyplot as plt | |
def download_hquotes_binance(binance_tickers): | |
client = Client(config('BINANCE_APIKEY'), config('BINANCE_SECRETKEY')) | |
df_buffer = pd.DataFrame() | |
for idx, ticker in enumerate(binance_tickers): | |
klines = client.get_historical_klines( | |
ticker, Client.KLINE_INTERVAL_1DAY, "26 Jun, 2022") | |
ts_list, q_list = [], [] | |
for k in klines: | |
ts_list.append(datetime.fromtimestamp(int(k[0])/1000)) | |
q_list.append(float(k[4])) | |
df_buffer[ticker] = pd.Series(data=q_list, index=ts_list) | |
return df_buffer | |
tickers = [ 'BTCUSDT', | |
'ETHUSDT', | |
'BNBUSDT', | |
'XRPUSDT', | |
'ADAUSDT', | |
'DOGEUSDT', | |
'SOLUSDT', | |
'DOTUSDT', | |
#'LTCUSDT', | |
] | |
if __name__ == '__main__': | |
df = download_hquotes_binance(tickers) | |
df.to_pickle("quotes.pkl") | |
(df / df.iloc[0]).plot() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment