Last active
August 6, 2024 16:09
-
-
Save VikingPenguinYT/665769ba03115b1a0888893eaf1d4f13 to your computer and use it in GitHub Desktop.
Implementing Dropout as a Bayesian Approximation in TensorFlow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
from tensorflow.contrib.distributions import Bernoulli | |
class VariationalDense: | |
"""Variational Dense Layer Class""" | |
def __init__(self, n_in, n_out, model_prob, model_lam): | |
self.model_prob = model_prob | |
self.model_lam = model_lam | |
self.model_bern = Bernoulli(probs=self.model_prob, dtype=tf.float32) | |
self.model_M = tf.Variable(tf.truncated_normal([n_in, n_out], stddev=0.01)) | |
self.model_m = tf.Variable(tf.zeros([n_out])) | |
self.model_W = tf.matmul( | |
tf.diag(self.model_bern.sample((n_in, ))), self.model_M | |
) | |
def __call__(self, X, activation=tf.identity): | |
output = activation(tf.matmul(X, self.model_W) + self.model_m) | |
if self.model_M.shape[1] == 1: | |
output = tf.squeeze(output) | |
return output | |
@property | |
def regularization(self): | |
return self.model_lam * ( | |
self.model_prob * tf.reduce_sum(tf.square(self.model_M)) + | |
tf.reduce_sum(tf.square(self.model_m)) | |
) | |
# Created sample data. | |
n_samples = 20 | |
X = np.random.normal(size=(n_samples, 1)) | |
y = np.random.normal(np.cos(5.*X) / (np.abs(X) + 1.), 0.1).ravel() | |
X_pred = np.atleast_2d(np.linspace(-3., 3., num=100)).T | |
X = np.hstack((X, X**2, X**3)) | |
X_pred = np.hstack((X_pred, X_pred**2, X_pred**3)) | |
# Create the TensorFlow model. | |
n_feats = X.shape[1] | |
n_hidden = 100 | |
model_prob = 0.9 | |
model_lam = 1e-2 | |
model_X = tf.placeholder(tf.float32, [None, n_feats]) | |
model_y = tf.placeholder(tf.float32, [None]) | |
model_L_1 = VariationalDense(n_feats, n_hidden, model_prob, model_lam) | |
model_L_2 = VariationalDense(n_hidden, n_hidden, model_prob, model_lam) | |
model_L_3 = VariationalDense(n_hidden, 1, model_prob, model_lam) | |
model_out_1 = model_L_1(model_X, tf.nn.relu) | |
model_out_2 = model_L_2(model_out_1, tf.nn.relu) | |
model_pred = model_L_3(model_out_2) | |
model_sse = tf.reduce_sum(tf.square(model_y - model_pred)) | |
model_mse = model_sse / n_samples | |
model_loss = ( | |
# Negative log-likelihood. | |
model_sse + | |
# Regularization. | |
model_L_1.regularization + | |
model_L_2.regularization + | |
model_L_3.regularization | |
) / n_samples | |
train_step = tf.train.AdamOptimizer(1e-3).minimize(model_loss) | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
for i in range(10000): | |
sess.run(train_step, {model_X: X, model_y: y}) | |
if i % 100 == 0: | |
mse = sess.run(model_mse, {model_X: X, model_y: y}) | |
print("Iteration {}. Mean squared error: {:.4f}.".format(i, mse)) | |
# Sample from the posterior. | |
n_post = 1000 | |
Y_post = np.zeros((n_post, X_pred.shape[0])) | |
for i in range(n_post): | |
Y_post[i] = sess.run(model_pred, {model_X: X_pred}) | |
if True: | |
plt.figure(figsize=(8, 6)) | |
for i in range(n_post): | |
plt.plot(X_pred[:, 0], Y_post[i], "b-", alpha=1. / 200) | |
plt.plot(X[:, 0], y, "r.") | |
plt.grid() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment