-
-
Save Vini2/bd22b36ddc69c5327097921f5118b709 to your computer and use it in GitHub Desktop.
import java.util.Random; | |
/** | |
* | |
* @author Vijini | |
*/ | |
//Main class | |
public class SimpleDemoGA { | |
Population population = new Population(); | |
Individual fittest; | |
Individual secondFittest; | |
int generationCount = 0; | |
public static void main(String[] args) { | |
Random rn = new Random(); | |
SimpleDemoGA demo = new SimpleDemoGA(); | |
//Initialize population | |
demo.population.initializePopulation(10); | |
//Calculate fitness of each individual | |
demo.population.calculateFitness(); | |
System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); | |
//While population gets an individual with maximum fitness | |
while (demo.population.fittest < 5) { | |
++demo.generationCount; | |
//Do selection | |
demo.selection(); | |
//Do crossover | |
demo.crossover(); | |
//Do mutation under a random probability | |
if (rn.nextInt()%7 < 5) { | |
demo.mutation(); | |
} | |
//Add fittest offspring to population | |
demo.addFittestOffspring(); | |
//Calculate new fitness value | |
demo.population.calculateFitness(); | |
System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); | |
} | |
System.out.println("\nSolution found in generation " + demo.generationCount); | |
System.out.println("Fitness: "+demo.population.getFittest().fitness); | |
System.out.print("Genes: "); | |
for (int i = 0; i < 5; i++) { | |
System.out.print(demo.population.getFittest().genes[i]); | |
} | |
System.out.println(""); | |
} | |
//Selection | |
void selection() { | |
//Select the most fittest individual | |
fittest = population.getFittest(); | |
//Select the second most fittest individual | |
secondFittest = population.getSecondFittest(); | |
} | |
//Crossover | |
void crossover() { | |
Random rn = new Random(); | |
//Select a random crossover point | |
int crossOverPoint = rn.nextInt(population.individuals[0].geneLength); | |
//Swap values among parents | |
for (int i = 0; i < crossOverPoint; i++) { | |
int temp = fittest.genes[i]; | |
fittest.genes[i] = secondFittest.genes[i]; | |
secondFittest.genes[i] = temp; | |
} | |
} | |
//Mutation | |
void mutation() { | |
Random rn = new Random(); | |
//Select a random mutation point | |
int mutationPoint = rn.nextInt(population.individuals[0].geneLength); | |
//Flip values at the mutation point | |
if (fittest.genes[mutationPoint] == 0) { | |
fittest.genes[mutationPoint] = 1; | |
} else { | |
fittest.genes[mutationPoint] = 0; | |
} | |
mutationPoint = rn.nextInt(population.individuals[0].geneLength); | |
if (secondFittest.genes[mutationPoint] == 0) { | |
secondFittest.genes[mutationPoint] = 1; | |
} else { | |
secondFittest.genes[mutationPoint] = 0; | |
} | |
} | |
//Get fittest offspring | |
Individual getFittestOffspring() { | |
if (fittest.fitness > secondFittest.fitness) { | |
return fittest; | |
} | |
return secondFittest; | |
} | |
//Replace least fittest individual from most fittest offspring | |
void addFittestOffspring() { | |
//Update fitness values of offspring | |
fittest.calcFitness(); | |
secondFittest.calcFitness(); | |
//Get index of least fit individual | |
int leastFittestIndex = population.getLeastFittestIndex(); | |
//Replace least fittest individual from most fittest offspring | |
population.individuals[leastFittestIndex] = getFittestOffspring(); | |
} | |
} | |
//Individual class | |
class Individual { | |
int fitness = 0; | |
int[] genes = new int[5]; | |
int geneLength = 5; | |
public Individual() { | |
Random rn = new Random(); | |
//Set genes randomly for each individual | |
for (int i = 0; i < genes.length; i++) { | |
genes[i] = Math.abs(rn.nextInt() % 2); | |
} | |
fitness = 0; | |
} | |
//Calculate fitness | |
public void calcFitness() { | |
fitness = 0; | |
for (int i = 0; i < 5; i++) { | |
if (genes[i] == 1) { | |
++fitness; | |
} | |
} | |
} | |
} | |
//Population class | |
class Population { | |
int popSize = 10; | |
Individual[] individuals = new Individual[10]; | |
int fittest = 0; | |
//Initialize population | |
public void initializePopulation(int size) { | |
for (int i = 0; i < individuals.length; i++) { | |
individuals[i] = new Individual(); | |
} | |
} | |
//Get the fittest individual | |
public Individual getFittest() { | |
int maxFit = Integer.MIN_VALUE; | |
int maxFitIndex = 0; | |
for (int i = 0; i < individuals.length; i++) { | |
if (maxFit <= individuals[i].fitness) { | |
maxFit = individuals[i].fitness; | |
maxFitIndex = i; | |
} | |
} | |
fittest = individuals[maxFitIndex].fitness; | |
return individuals[maxFitIndex]; | |
} | |
//Get the second most fittest individual | |
public Individual getSecondFittest() { | |
int maxFit1 = 0; | |
int maxFit2 = 0; | |
for (int i = 0; i < individuals.length; i++) { | |
if (individuals[i].fitness > individuals[maxFit1].fitness) { | |
maxFit2 = maxFit1; | |
maxFit1 = i; | |
} else if (individuals[i].fitness > individuals[maxFit2].fitness) { | |
maxFit2 = i; | |
} | |
} | |
return individuals[maxFit2]; | |
} | |
//Get index of least fittest individual | |
public int getLeastFittestIndex() { | |
int minFitVal = Integer.MAX_VALUE; | |
int minFitIndex = 0; | |
for (int i = 0; i < individuals.length; i++) { | |
if (minFitVal >= individuals[i].fitness) { | |
minFitVal = individuals[i].fitness; | |
minFitIndex = i; | |
} | |
} | |
return minFitIndex; | |
} | |
//Calculate fitness of each individual | |
public void calculateFitness() { | |
for (int i = 0; i < individuals.length; i++) { | |
individuals[i].calcFitness(); | |
} | |
getFittest(); | |
} | |
} | |
Thank you for your perfect explanation on Towards Data Science 👍 and for this great code.
Hello, I read blog in the page (link) and understand your code. I find a big bug in the source code and finally I fix it. Before fixing, your source code sometime does not converge. The reason is because you change the genes of parent. So I add function "clone()" to make children and parent refer to different objects. The following is my fixed source code.
package com.huai.genetic_algo;
import java.util.Random;
/**
*
* @author Vijini
*/
//Main class
public class SimpleDemoGA {
Population population = new Population();
Individual fittest;
Individual secondFittest;
int generationCount = 0;
public static void main(String[] args) {
Random rn = new Random();
SimpleDemoGA demo = new SimpleDemoGA();
//Initialize population
demo.population.initializePopulation(10);
//Calculate fitness of each individual
demo.population.calculateFitness();
System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
//While population gets an individual with maximum fitness
while (demo.population.fittest < 5) {
++demo.generationCount;
//Do selection
demo.selection();
//Do crossover
demo.crossover();
//Do mutation under a random probability
if (rn.nextInt()%7 < 5) {
demo.mutation();
}
//Add fittest offspring to population
demo.addFittestOffspring();
//Calculate new fitness value
demo.population.calculateFitness();
System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
}
System.out.println("\nSolution found in generation " + demo.generationCount);
System.out.println("Fitness: "+demo.population.getFittest().fitness);
System.out.print("Genes: ");
for (int i = 0; i < 5; i++) {
System.out.print(demo.population.getFittest().genes[i]);
}
System.out.println("");
}
//Selection
void selection() {
//Select the most fittest individual
fittest = population.getFittest();
//Select the second most fittest individual
secondFittest = population.getSecondFittest();
}
//Crossover
void crossover() {
Random rn = new Random();
//Select a random crossover point
int crossOverPoint = rn.nextInt(population.individuals[0].geneLength);
//Swap values among parents
for (int i = 0; i < crossOverPoint; i++) {
int temp = fittest.genes[i];
fittest.genes[i] = secondFittest.genes[i];
secondFittest.genes[i] = temp;
}
}
//Mutation
void mutation() {
Random rn = new Random();
//Select a random mutation point
int mutationPoint = rn.nextInt(population.individuals[0].geneLength);
//Flip values at the mutation point
if (fittest.genes[mutationPoint] == 0) {
fittest.genes[mutationPoint] = 1;
} else {
fittest.genes[mutationPoint] = 0;
}
mutationPoint = rn.nextInt(population.individuals[0].geneLength);
if (secondFittest.genes[mutationPoint] == 0) {
secondFittest.genes[mutationPoint] = 1;
} else {
secondFittest.genes[mutationPoint] = 0;
}
}
//Get fittest offspring
Individual getFittestOffspring() {
if (fittest.fitness > secondFittest.fitness) {
return fittest;
}
return secondFittest;
}
//Replace least fittest individual from most fittest offspring
void addFittestOffspring() {
//Update fitness values of offspring
fittest.calcFitness();
secondFittest.calcFitness();
//Get index of least fit individual
int leastFittestIndex = population.getLeastFittestIndex();
//Replace least fittest individual from most fittest offspring
population.individuals[leastFittestIndex] = getFittestOffspring();
}
}
//Individual class
class Individual implements Cloneable{
int fitness = 0;
int[] genes = new int[5];
int geneLength = 5;
public Individual() {
Random rn = new Random();
//Set genes randomly for each individual
for (int i = 0; i < genes.length; i++) {
genes[i] = Math.abs(rn.nextInt() % 2);
}
fitness = 0;
}
//Calculate fitness
public void calcFitness() {
fitness = 0;
for (int i = 0; i < 5; i++) {
if (genes[i] == 1) {
++fitness;
}
}
}
@Override
protected Object clone() throws CloneNotSupportedException {
Individual individual = (Individual)super.clone();
individual.genes = new int[5];
for(int i = 0; i < individual.genes.length; i++){
individual.genes[i] = this.genes[i];
}
return individual;
}
}
//Population class
class Population {
int popSize = 10;
Individual[] individuals = new Individual[10];
int fittest = 0;
//Initialize population
public void initializePopulation(int size) {
for (int i = 0; i < individuals.length; i++) {
individuals[i] = new Individual();
}
}
//Get the fittest individual
public Individual getFittest() {
int maxFit = Integer.MIN_VALUE;
int maxFitIndex = 0;
for (int i = 0; i < individuals.length; i++) {
if (maxFit <= individuals[i].fitness) {
maxFit = individuals[i].fitness;
maxFitIndex = i;
}
}
fittest = individuals[maxFitIndex].fitness;
try {
return (Individual) individuals[maxFitIndex].clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();
}
return null;
}
//Get the second most fittest individual
public Individual getSecondFittest() {
int maxFit1 = 0;
int maxFit2 = 0;
for (int i = 0; i < individuals.length; i++) {
if (individuals[i].fitness > individuals[maxFit1].fitness) {
maxFit2 = maxFit1;
maxFit1 = i;
} else if (individuals[i].fitness > individuals[maxFit2].fitness) {
maxFit2 = i;
}
}
try {
return (Individual) individuals[maxFit2].clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();
}
return null;
}
//Get index of least fittest individual
public int getLeastFittestIndex() {
int minFitVal = Integer.MAX_VALUE;
int minFitIndex = 0;
for (int i = 0; i < individuals.length; i++) {
if (minFitVal >= individuals[i].fitness) {
minFitVal = individuals[i].fitness;
minFitIndex = i;
}
}
return minFitIndex;
}
//Calculate fitness of each individual
public void calculateFitness() {
for (int i = 0; i < individuals.length; i++) {
individuals[i].calcFitness();
}
getFittest();
}
}
Hello, I read blog in the page (link) and understand your code. I find a big bug in the source code and finally I fix it. Before fixing, your source code sometime does not converge. The reason is because you change the genes of parent. So I add function "clone()" to make children and parent refer to different objects. The following is my fixed source code.
package com.huai.genetic_algo; import java.util.Random; /** * * @author Vijini */ //Main class public class SimpleDemoGA { Population population = new Population(); Individual fittest; Individual secondFittest; int generationCount = 0; public static void main(String[] args) { Random rn = new Random(); SimpleDemoGA demo = new SimpleDemoGA(); //Initialize population demo.population.initializePopulation(10); //Calculate fitness of each individual demo.population.calculateFitness(); System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); //While population gets an individual with maximum fitness while (demo.population.fittest < 5) { ++demo.generationCount; //Do selection demo.selection(); //Do crossover demo.crossover(); //Do mutation under a random probability if (rn.nextInt()%7 < 5) { demo.mutation(); } //Add fittest offspring to population demo.addFittestOffspring(); //Calculate new fitness value demo.population.calculateFitness(); System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); } System.out.println("\nSolution found in generation " + demo.generationCount); System.out.println("Fitness: "+demo.population.getFittest().fitness); System.out.print("Genes: "); for (int i = 0; i < 5; i++) { System.out.print(demo.population.getFittest().genes[i]); } System.out.println(""); } //Selection void selection() { //Select the most fittest individual fittest = population.getFittest(); //Select the second most fittest individual secondFittest = population.getSecondFittest(); } //Crossover void crossover() { Random rn = new Random(); //Select a random crossover point int crossOverPoint = rn.nextInt(population.individuals[0].geneLength); //Swap values among parents for (int i = 0; i < crossOverPoint; i++) { int temp = fittest.genes[i]; fittest.genes[i] = secondFittest.genes[i]; secondFittest.genes[i] = temp; } } //Mutation void mutation() { Random rn = new Random(); //Select a random mutation point int mutationPoint = rn.nextInt(population.individuals[0].geneLength); //Flip values at the mutation point if (fittest.genes[mutationPoint] == 0) { fittest.genes[mutationPoint] = 1; } else { fittest.genes[mutationPoint] = 0; } mutationPoint = rn.nextInt(population.individuals[0].geneLength); if (secondFittest.genes[mutationPoint] == 0) { secondFittest.genes[mutationPoint] = 1; } else { secondFittest.genes[mutationPoint] = 0; } } //Get fittest offspring Individual getFittestOffspring() { if (fittest.fitness > secondFittest.fitness) { return fittest; } return secondFittest; } //Replace least fittest individual from most fittest offspring void addFittestOffspring() { //Update fitness values of offspring fittest.calcFitness(); secondFittest.calcFitness(); //Get index of least fit individual int leastFittestIndex = population.getLeastFittestIndex(); //Replace least fittest individual from most fittest offspring population.individuals[leastFittestIndex] = getFittestOffspring(); } } //Individual class class Individual implements Cloneable{ int fitness = 0; int[] genes = new int[5]; int geneLength = 5; public Individual() { Random rn = new Random(); //Set genes randomly for each individual for (int i = 0; i < genes.length; i++) { genes[i] = Math.abs(rn.nextInt() % 2); } fitness = 0; } //Calculate fitness public void calcFitness() { fitness = 0; for (int i = 0; i < 5; i++) { if (genes[i] == 1) { ++fitness; } } } @Override protected Object clone() throws CloneNotSupportedException { Individual individual = (Individual)super.clone(); individual.genes = new int[5]; for(int i = 0; i < individual.genes.length; i++){ individual.genes[i] = this.genes[i]; } return individual; } } //Population class class Population { int popSize = 10; Individual[] individuals = new Individual[10]; int fittest = 0; //Initialize population public void initializePopulation(int size) { for (int i = 0; i < individuals.length; i++) { individuals[i] = new Individual(); } } //Get the fittest individual public Individual getFittest() { int maxFit = Integer.MIN_VALUE; int maxFitIndex = 0; for (int i = 0; i < individuals.length; i++) { if (maxFit <= individuals[i].fitness) { maxFit = individuals[i].fitness; maxFitIndex = i; } } fittest = individuals[maxFitIndex].fitness; try { return (Individual) individuals[maxFitIndex].clone(); } catch (CloneNotSupportedException e) { e.printStackTrace(); } return null; } //Get the second most fittest individual public Individual getSecondFittest() { int maxFit1 = 0; int maxFit2 = 0; for (int i = 0; i < individuals.length; i++) { if (individuals[i].fitness > individuals[maxFit1].fitness) { maxFit2 = maxFit1; maxFit1 = i; } else if (individuals[i].fitness > individuals[maxFit2].fitness) { maxFit2 = i; } } try { return (Individual) individuals[maxFit2].clone(); } catch (CloneNotSupportedException e) { e.printStackTrace(); } return null; } //Get index of least fittest individual public int getLeastFittestIndex() { int minFitVal = Integer.MAX_VALUE; int minFitIndex = 0; for (int i = 0; i < individuals.length; i++) { if (minFitVal >= individuals[i].fitness) { minFitVal = individuals[i].fitness; minFitIndex = i; } } return minFitIndex; } //Calculate fitness of each individual public void calculateFitness() { for (int i = 0; i < individuals.length; i++) { individuals[i].calcFitness(); } getFittest(); } }
Go check the repo :)
https://github.com/memento/GeneticAlgorithm
Hello, I read blog in the page (link) and understand your code. I find a big bug in the source code and finally I fix it. Before fixing, your source code sometime does not converge. The reason is because you change the genes of parent. So I add function "clone()" to make children and parent refer to different objects. The following is my fixed source code.
package com.huai.genetic_algo; import java.util.Random; /** * * @author Vijini */ //Main class public class SimpleDemoGA { Population population = new Population(); Individual fittest; Individual secondFittest; int generationCount = 0; public static void main(String[] args) { Random rn = new Random(); SimpleDemoGA demo = new SimpleDemoGA(); //Initialize population demo.population.initializePopulation(10); //Calculate fitness of each individual demo.population.calculateFitness(); System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); //While population gets an individual with maximum fitness while (demo.population.fittest < 5) { ++demo.generationCount; //Do selection demo.selection(); //Do crossover demo.crossover(); //Do mutation under a random probability if (rn.nextInt()%7 < 5) { demo.mutation(); } //Add fittest offspring to population demo.addFittestOffspring(); //Calculate new fitness value demo.population.calculateFitness(); System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); } System.out.println("\nSolution found in generation " + demo.generationCount); System.out.println("Fitness: "+demo.population.getFittest().fitness); System.out.print("Genes: "); for (int i = 0; i < 5; i++) { System.out.print(demo.population.getFittest().genes[i]); } System.out.println(""); } //Selection void selection() { //Select the most fittest individual fittest = population.getFittest(); //Select the second most fittest individual secondFittest = population.getSecondFittest(); } //Crossover void crossover() { Random rn = new Random(); //Select a random crossover point int crossOverPoint = rn.nextInt(population.individuals[0].geneLength); //Swap values among parents for (int i = 0; i < crossOverPoint; i++) { int temp = fittest.genes[i]; fittest.genes[i] = secondFittest.genes[i]; secondFittest.genes[i] = temp; } } //Mutation void mutation() { Random rn = new Random(); //Select a random mutation point int mutationPoint = rn.nextInt(population.individuals[0].geneLength); //Flip values at the mutation point if (fittest.genes[mutationPoint] == 0) { fittest.genes[mutationPoint] = 1; } else { fittest.genes[mutationPoint] = 0; } mutationPoint = rn.nextInt(population.individuals[0].geneLength); if (secondFittest.genes[mutationPoint] == 0) { secondFittest.genes[mutationPoint] = 1; } else { secondFittest.genes[mutationPoint] = 0; } } //Get fittest offspring Individual getFittestOffspring() { if (fittest.fitness > secondFittest.fitness) { return fittest; } return secondFittest; } //Replace least fittest individual from most fittest offspring void addFittestOffspring() { //Update fitness values of offspring fittest.calcFitness(); secondFittest.calcFitness(); //Get index of least fit individual int leastFittestIndex = population.getLeastFittestIndex(); //Replace least fittest individual from most fittest offspring population.individuals[leastFittestIndex] = getFittestOffspring(); } } //Individual class class Individual implements Cloneable{ int fitness = 0; int[] genes = new int[5]; int geneLength = 5; public Individual() { Random rn = new Random(); //Set genes randomly for each individual for (int i = 0; i < genes.length; i++) { genes[i] = Math.abs(rn.nextInt() % 2); } fitness = 0; } //Calculate fitness public void calcFitness() { fitness = 0; for (int i = 0; i < 5; i++) { if (genes[i] == 1) { ++fitness; } } } @Override protected Object clone() throws CloneNotSupportedException { Individual individual = (Individual)super.clone(); individual.genes = new int[5]; for(int i = 0; i < individual.genes.length; i++){ individual.genes[i] = this.genes[i]; } return individual; } } //Population class class Population { int popSize = 10; Individual[] individuals = new Individual[10]; int fittest = 0; //Initialize population public void initializePopulation(int size) { for (int i = 0; i < individuals.length; i++) { individuals[i] = new Individual(); } } //Get the fittest individual public Individual getFittest() { int maxFit = Integer.MIN_VALUE; int maxFitIndex = 0; for (int i = 0; i < individuals.length; i++) { if (maxFit <= individuals[i].fitness) { maxFit = individuals[i].fitness; maxFitIndex = i; } } fittest = individuals[maxFitIndex].fitness; try { return (Individual) individuals[maxFitIndex].clone(); } catch (CloneNotSupportedException e) { e.printStackTrace(); } return null; } //Get the second most fittest individual public Individual getSecondFittest() { int maxFit1 = 0; int maxFit2 = 0; for (int i = 0; i < individuals.length; i++) { if (individuals[i].fitness > individuals[maxFit1].fitness) { maxFit2 = maxFit1; maxFit1 = i; } else if (individuals[i].fitness > individuals[maxFit2].fitness) { maxFit2 = i; } } try { return (Individual) individuals[maxFit2].clone(); } catch (CloneNotSupportedException e) { e.printStackTrace(); } return null; } //Get index of least fittest individual public int getLeastFittestIndex() { int minFitVal = Integer.MAX_VALUE; int minFitIndex = 0; for (int i = 0; i < individuals.length; i++) { if (minFitVal >= individuals[i].fitness) { minFitVal = individuals[i].fitness; minFitIndex = i; } } return minFitIndex; } //Calculate fitness of each individual public void calculateFitness() { for (int i = 0; i < individuals.length; i++) { individuals[i].calcFitness(); } getFittest(); } }
Thank you very much for the fix @liangyihuai
Hello, I read blog in the page (link) and understand your code. I find a big bug in the source code and finally I fix it. Before fixing, your source code sometime does not converge. The reason is because you change the genes of parent. So I add function "clone()" to make children and parent refer to different objects. The following is my fixed source code.
package com.huai.genetic_algo; import java.util.Random; /** * * @author Vijini */ //Main class public class SimpleDemoGA { Population population = new Population(); Individual fittest; Individual secondFittest; int generationCount = 0; public static void main(String[] args) { Random rn = new Random(); SimpleDemoGA demo = new SimpleDemoGA(); //Initialize population demo.population.initializePopulation(10); //Calculate fitness of each individual demo.population.calculateFitness(); System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); //While population gets an individual with maximum fitness while (demo.population.fittest < 5) { ++demo.generationCount; //Do selection demo.selection(); //Do crossover demo.crossover(); //Do mutation under a random probability if (rn.nextInt()%7 < 5) { demo.mutation(); } //Add fittest offspring to population demo.addFittestOffspring(); //Calculate new fitness value demo.population.calculateFitness(); System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest); } System.out.println("\nSolution found in generation " + demo.generationCount); System.out.println("Fitness: "+demo.population.getFittest().fitness); System.out.print("Genes: "); for (int i = 0; i < 5; i++) { System.out.print(demo.population.getFittest().genes[i]); } System.out.println(""); } //Selection void selection() { //Select the most fittest individual fittest = population.getFittest(); //Select the second most fittest individual secondFittest = population.getSecondFittest(); } //Crossover void crossover() { Random rn = new Random(); //Select a random crossover point int crossOverPoint = rn.nextInt(population.individuals[0].geneLength); //Swap values among parents for (int i = 0; i < crossOverPoint; i++) { int temp = fittest.genes[i]; fittest.genes[i] = secondFittest.genes[i]; secondFittest.genes[i] = temp; } } //Mutation void mutation() { Random rn = new Random(); //Select a random mutation point int mutationPoint = rn.nextInt(population.individuals[0].geneLength); //Flip values at the mutation point if (fittest.genes[mutationPoint] == 0) { fittest.genes[mutationPoint] = 1; } else { fittest.genes[mutationPoint] = 0; } mutationPoint = rn.nextInt(population.individuals[0].geneLength); if (secondFittest.genes[mutationPoint] == 0) { secondFittest.genes[mutationPoint] = 1; } else { secondFittest.genes[mutationPoint] = 0; } } //Get fittest offspring Individual getFittestOffspring() { if (fittest.fitness > secondFittest.fitness) { return fittest; } return secondFittest; } //Replace least fittest individual from most fittest offspring void addFittestOffspring() { //Update fitness values of offspring fittest.calcFitness(); secondFittest.calcFitness(); //Get index of least fit individual int leastFittestIndex = population.getLeastFittestIndex(); //Replace least fittest individual from most fittest offspring population.individuals[leastFittestIndex] = getFittestOffspring(); } } //Individual class class Individual implements Cloneable{ int fitness = 0; int[] genes = new int[5]; int geneLength = 5; public Individual() { Random rn = new Random(); //Set genes randomly for each individual for (int i = 0; i < genes.length; i++) { genes[i] = Math.abs(rn.nextInt() % 2); } fitness = 0; } //Calculate fitness public void calcFitness() { fitness = 0; for (int i = 0; i < 5; i++) { if (genes[i] == 1) { ++fitness; } } } @Override protected Object clone() throws CloneNotSupportedException { Individual individual = (Individual)super.clone(); individual.genes = new int[5]; for(int i = 0; i < individual.genes.length; i++){ individual.genes[i] = this.genes[i]; } return individual; } } //Population class class Population { int popSize = 10; Individual[] individuals = new Individual[10]; int fittest = 0; //Initialize population public void initializePopulation(int size) { for (int i = 0; i < individuals.length; i++) { individuals[i] = new Individual(); } } //Get the fittest individual public Individual getFittest() { int maxFit = Integer.MIN_VALUE; int maxFitIndex = 0; for (int i = 0; i < individuals.length; i++) { if (maxFit <= individuals[i].fitness) { maxFit = individuals[i].fitness; maxFitIndex = i; } } fittest = individuals[maxFitIndex].fitness; try { return (Individual) individuals[maxFitIndex].clone(); } catch (CloneNotSupportedException e) { e.printStackTrace(); } return null; } //Get the second most fittest individual public Individual getSecondFittest() { int maxFit1 = 0; int maxFit2 = 0; for (int i = 0; i < individuals.length; i++) { if (individuals[i].fitness > individuals[maxFit1].fitness) { maxFit2 = maxFit1; maxFit1 = i; } else if (individuals[i].fitness > individuals[maxFit2].fitness) { maxFit2 = i; } } try { return (Individual) individuals[maxFit2].clone(); } catch (CloneNotSupportedException e) { e.printStackTrace(); } return null; } //Get index of least fittest individual public int getLeastFittestIndex() { int minFitVal = Integer.MAX_VALUE; int minFitIndex = 0; for (int i = 0; i < individuals.length; i++) { if (minFitVal >= individuals[i].fitness) { minFitVal = individuals[i].fitness; minFitIndex = i; } } return minFitIndex; } //Calculate fitness of each individual public void calculateFitness() { for (int i = 0; i < individuals.length; i++) { individuals[i].calcFitness(); } getFittest(); } }
Go check the repo :)
Thank you very much for sharing this with me @memento. This looks very nice with the visualizations.
Hello everyone! Do you have that code in Matlab? I need the same result in Matlab. Please, help me. Thank you in advance
Hello! Thank you for explaining this algorithm in easy way.... What changes can we do to make it solve Multi-Objective Optimization Problems? Probably making it Multi-Objective GA(MOGA)?
Author: @Vini2
Given a set of 5 genes, which can hold one of the binary values 0 and 1, the fitness value is calculated as the number of 1s present in the genome. If there are five 1s, then it is having maximum fitness. If there are no 1s, then if has the minimum fitness. This genetic algorithm provides a population having the maximum fit individual, having five 1s.