Last active
October 31, 2024 02:08
-
-
Save W4ngatang/60c2bdb54d156a41194446737ce03e2e to your computer and use it in GitHub Desktop.
Script for downloading data of the GLUE benchmark (gluebenchmark.com)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' Script for downloading all GLUE data. | |
Note: for legal reasons, we are unable to host MRPC. | |
You can either use the version hosted by the SentEval team, which is already tokenized, | |
or you can download the original data from (https://download.microsoft.com/download/D/4/6/D46FF87A-F6B9-4252-AA8B-3604ED519838/MSRParaphraseCorpus.msi) and extract the data from it manually. | |
For Windows users, you can run the .msi file. For Mac and Linux users, consider an external library such as 'cabextract' (see below for an example). | |
You should then rename and place specific files in a folder (see below for an example). | |
mkdir MRPC | |
cabextract MSRParaphraseCorpus.msi -d MRPC | |
cat MRPC/_2DEC3DBE877E4DB192D17C0256E90F1D | tr -d $'\r' > MRPC/msr_paraphrase_train.txt | |
cat MRPC/_D7B391F9EAFF4B1B8BCE8F21B20B1B61 | tr -d $'\r' > MRPC/msr_paraphrase_test.txt | |
rm MRPC/_* | |
rm MSRParaphraseCorpus.msi | |
1/30/19: It looks like SentEval is no longer hosting their extracted and tokenized MRPC data, so you'll need to download the data from the original source for now. | |
2/11/19: It looks like SentEval actually *is* hosting the extracted data. Hooray! | |
''' | |
import os | |
import sys | |
import shutil | |
import argparse | |
import tempfile | |
import urllib.request | |
import zipfile | |
TASKS = ["CoLA", "SST", "MRPC", "QQP", "STS", "MNLI", "QNLI", "RTE", "WNLI", "diagnostic"] | |
TASK2PATH = {"CoLA":'https://dl.fbaipublicfiles.com/glue/data/CoLA.zip', | |
"SST":'https://dl.fbaipublicfiles.com/glue/data/SST-2.zip', | |
"QQP":'https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip', | |
"STS":'https://dl.fbaipublicfiles.com/glue/data/STS-B.zip', | |
"MNLI":'https://dl.fbaipublicfiles.com/glue/data/MNLI.zip', | |
"QNLI":'https://dl.fbaipublicfiles.com/glue/data/QNLIv2.zip', | |
"RTE":'https://dl.fbaipublicfiles.com/glue/data/RTE.zip', | |
"WNLI":'https://dl.fbaipublicfiles.com/glue/data/WNLI.zip', | |
"diagnostic":'https://dl.fbaipublicfiles.com/glue/data/AX.tsv'} | |
MRPC_TRAIN = 'https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt' | |
MRPC_TEST = 'https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt' | |
def download_and_extract(task, data_dir): | |
print("Downloading and extracting %s..." % task) | |
if task == "MNLI": | |
print("\tNote (12/10/20): This script no longer downloads SNLI. You will need to manually download and format the data to use SNLI.") | |
data_file = "%s.zip" % task | |
urllib.request.urlretrieve(TASK2PATH[task], data_file) | |
with zipfile.ZipFile(data_file) as zip_ref: | |
zip_ref.extractall(data_dir) | |
os.remove(data_file) | |
print("\tCompleted!") | |
def format_mrpc(data_dir, path_to_data): | |
print("Processing MRPC...") | |
mrpc_dir = os.path.join(data_dir, "MRPC") | |
if not os.path.isdir(mrpc_dir): | |
os.mkdir(mrpc_dir) | |
if path_to_data: | |
mrpc_train_file = os.path.join(path_to_data, "msr_paraphrase_train.txt") | |
mrpc_test_file = os.path.join(path_to_data, "msr_paraphrase_test.txt") | |
else: | |
try: | |
mrpc_train_file = os.path.join(mrpc_dir, "msr_paraphrase_train.txt") | |
mrpc_test_file = os.path.join(mrpc_dir, "msr_paraphrase_test.txt") | |
URLLIB.urlretrieve(MRPC_TRAIN, mrpc_train_file) | |
URLLIB.urlretrieve(MRPC_TEST, mrpc_test_file) | |
except urllib.error.HTTPError: | |
print("Error downloading MRPC") | |
return | |
assert os.path.isfile(mrpc_train_file), "Train data not found at %s" % mrpc_train_file | |
assert os.path.isfile(mrpc_test_file), "Test data not found at %s" % mrpc_test_file | |
with io.open(mrpc_test_file, encoding='utf-8') as data_fh, \ | |
io.open(os.path.join(mrpc_dir, "test.tsv"), 'w', encoding='utf-8') as test_fh: | |
header = data_fh.readline() | |
test_fh.write("index\t#1 ID\t#2 ID\t#1 String\t#2 String\n") | |
for idx, row in enumerate(data_fh): | |
label, id1, id2, s1, s2 = row.strip().split('\t') | |
test_fh.write("%d\t%s\t%s\t%s\t%s\n" % (idx, id1, id2, s1, s2)) | |
try: | |
URLLIB.urlretrieve(TASK2PATH["MRPC"], os.path.join(mrpc_dir, "dev_ids.tsv")) | |
except KeyError or urllib.error.HTTPError: | |
print("\tError downloading standard development IDs for MRPC. You will need to manually split your data.") | |
return | |
dev_ids = [] | |
with io.open(os.path.join(mrpc_dir, "dev_ids.tsv"), encoding='utf-8') as ids_fh: | |
for row in ids_fh: | |
dev_ids.append(row.strip().split('\t')) | |
with io.open(mrpc_train_file, encoding='utf-8') as data_fh, \ | |
io.open(os.path.join(mrpc_dir, "train.tsv"), 'w', encoding='utf-8') as train_fh, \ | |
io.open(os.path.join(mrpc_dir, "dev.tsv"), 'w', encoding='utf-8') as dev_fh: | |
header = data_fh.readline() | |
train_fh.write(header) | |
dev_fh.write(header) | |
for row in data_fh: | |
label, id1, id2, s1, s2 = row.strip().split('\t') | |
if [id1, id2] in dev_ids: | |
dev_fh.write("%s\t%s\t%s\t%s\t%s\n" % (label, id1, id2, s1, s2)) | |
else: | |
train_fh.write("%s\t%s\t%s\t%s\t%s\n" % (label, id1, id2, s1, s2)) | |
print("\tCompleted!") | |
def download_diagnostic(data_dir): | |
print("Downloading and extracting diagnostic...") | |
if not os.path.isdir(os.path.join(data_dir, "diagnostic")): | |
os.mkdir(os.path.join(data_dir, "diagnostic")) | |
data_file = os.path.join(data_dir, "diagnostic", "diagnostic.tsv") | |
urllib.request.urlretrieve(TASK2PATH["diagnostic"], data_file) | |
print("\tCompleted!") | |
return | |
def get_tasks(task_names): | |
task_names = task_names.split(',') | |
if "all" in task_names: | |
tasks = TASKS | |
else: | |
tasks = [] | |
for task_name in task_names: | |
assert task_name in TASKS, "Task %s not found!" % task_name | |
tasks.append(task_name) | |
return tasks | |
def main(arguments): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--data_dir', help='directory to save data to', type=str, default='glue_data') | |
parser.add_argument('--tasks', help='tasks to download data for as a comma separated string', | |
type=str, default='all') | |
parser.add_argument('--path_to_mrpc', help='path to directory containing extracted MRPC data, msr_paraphrase_train.txt and msr_paraphrase_text.txt', | |
type=str, default='') | |
args = parser.parse_args(arguments) | |
if not os.path.isdir(args.data_dir): | |
os.mkdir(args.data_dir) | |
tasks = get_tasks(args.tasks) | |
for task in tasks: | |
if task == 'MRPC': | |
format_mrpc(args.data_dir, args.path_to_mrpc) | |
elif task == 'diagnostic': | |
download_diagnostic(args.data_dir) | |
else: | |
download_and_extract(task, args.data_dir) | |
if __name__ == '__main__': | |
sys.exit(main(sys.argv[1:])) |
Got a NameError 'URLLIB' is not defined here:
Traceback (most recent call last): File "C:\Users\cpeng4\Downloads\download_glue_data\download_glue_data.py", line 150, in <module> sys.exit(main(sys.argv[1:])) File "C:\Users\cpeng4\Downloads\download_glue_data\download_glue_data.py", line 142, in main format_mrpc(args.data_dir, args.path_to_mrpc) File "C:\Users\cpeng4\Downloads\download_glue_data\download_glue_data.py", line 65, in format_mrpc URLLIB.urlretrieve(MRPC_TRAIN, mrpc_train_file) NameError: name 'URLLIB' is not defined
I managed to get the MRPC donwload completed by adding the following three lines:
import io
URLLIB = urllib.request
'MRPC':'https://raw.githubusercontent.com/MegEngine/Models/master/official/nlp/bert/glue_data/MRPC/dev_ids.tsv'
inside theTASK2PATH
dict (creds to @laouer)
tanks a lot!!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
it really works!