Created
December 15, 2017 03:07
-
-
Save WalkerHarrison/8ad3585d1e45dcd7e472c13d0974b548 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(xgboost) | |
library(BayesTree) | |
library(mice) | |
clean_data_impute = function(df) { | |
preds_remove <- c("sale", "author", "price", "authorstyle", | |
"count", "Surface_Rect", "Surface_Rnd", | |
"diff_origin", "singlefig", "lot") | |
preds_num <- c("position", "year", "logprice", "Height_in", | |
"Width_in", "Diam_in", "Surface", "nfigures") | |
preds_keep <- setdiff(names(df), preds_remove) | |
preds_factors <- setdiff(preds_keep, preds_num) | |
cleaned_df <- df %>% | |
mutate(nfigures = nfigures + singlefig, | |
Shape = dplyr::recode(Shape, "ovale" = "oval", | |
"ronde" = "round"), | |
type_intermed = replace(type_intermed, | |
Interm == 0, "N"), | |
material = replace(material, material %in% | |
c("huile", "huile sur papier", "pastel", "rond"), "other"), | |
material = replace(material, material %in% | |
c("octogone", "tableau", "tableaux pendants"), "canvas"), | |
Surface = replace(Surface, Surface == 0, NA), | |
logSurface = log(Surface), | |
Width_in = pmax(Width_in, Diam_in, na.rm = T), | |
Height_in = pmax(Height_in, Diam_in, na.rm = T)) %>% | |
mutate_all(funs(replace(., . == "n/a", NA))) %>% | |
mutate_all(funs(replace(., . == "", NA))) %>% | |
mutate_at(preds_factors, funs(replace(., is.na(.), "NA"))) %>% | |
mutate_at(preds_factors, factor) %>% | |
select(preds_keep, logSurface) | |
impute_cols = c("Height_in", "Width_in", "Surface") | |
imputed = mice(cleaned_df[,impute_cols], method = "pmm", maxit = 50, seed = 1) | |
imputed = complete(imputed) | |
cleaned_df[,impute_cols] = imputed | |
cleaned_df$logSurface = log(cleaned_df$Surface) | |
return(cleaned_df) | |
} | |
#### xgboost ###### | |
train = paint_train %>% select(-logprice) %>% data.matrix() | |
train.y = paint_train %>% select(logprice) %>% pull() | |
data.new <- paint_test %>% select(-logprice) %>% data.matrix() | |
xgb.fit <- xgboost(data = dtrain, | |
label = train.y, | |
objective = "reg:linear", | |
eval_metric = "rmse", | |
max.depth = 10, | |
eta = 0.3, | |
nround = 100, | |
verbose =0) | |
xgb.pred <- exp(predict(xgb.fit, newdata = data.new)) | |
###### BART #### | |
paint_train <- clean_data_impute(paintings_train) %>% distinct() | |
paint_test <- clean_data_impute(paintings_test) | |
train <- paint_train %>% select(dealer, year, Interm, origin_cat, endbuyer, | |
engraved, prevcoll, finished, lrgfont, discauth, logSurface, | |
winningbiddertype, position) | |
train.y <- paint_train$logprice | |
test <- paint_test %>% select(dealer, year, Interm, origin_cat, endbuyer, | |
engraved, prevcoll, finished, lrgfont, discauth, logSurface, | |
winningbiddertype, position) | |
lmbart <- bart(x.train=train, | |
y.train=train.y, | |
x.test=test) | |
bart.pred <- colMeans(lmbart$yhat.test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment