Last active
March 18, 2025 18:43
-
-
Save WardBrian/93d12876923790f23d9c5cb481e8cd34 to your computer and use it in GitHub Desktop.
Linear Regression
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import json | |
# load data from data.json | |
with open("data.json") as f: | |
data = json.load(f) | |
x = np.array(data['x']) | |
y = np.array(data['y']) | |
# posterior predictive check -- manual way | |
alpha = draws.get('alpha').flatten() | |
beta = draws.get('beta').flatten() | |
# plot 250 random samples to get an idea of envelope | |
N = 250 | |
choices = np.random.choice(len(alpha), N) | |
for i in choices: | |
plt.plot(x, alpha[i] + beta[i] * x, color='gray', alpha=0.05) | |
# plot mean line | |
plt.plot(x, alpha.mean() + beta.mean() * x, label='Mean estimate', color='black') | |
# plot data | |
plt.scatter(x, y, label='data') | |
plt.legend() | |
plt.show() | |
# less manual way | |
import arviz as az | |
import xarray as xr | |
idata = draws.to_arviz() | |
idata.add_groups(observed_data=xr.DataArray(name="y", data=y, coords={"x":x})) | |
idata.posterior['y_model'] = idata.posterior['alpha'] + idata.posterior['beta'] * idata.observed_data.x | |
az.plot_lm(idata=idata, y='y', y_model="y_model", | |
# also try kind_model = 'hdi' | |
kind_model="lines", | |
y_model_mean_kwargs={"color":"black"}, y_model_plot_kwargs={"color": "gray"}) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
install.packages("ggplot2") | |
library(posterior) | |
library(ggplot2) | |
# load data from data.json | |
data <- jsonlite::read_json("./data.json") | |
x <- unlist(data$x) | |
y <- unlist(data$y) | |
# posterior predictive check | |
alpha <- extract_variable(draws, "alpha") | |
beta <- extract_variable(draws, "beta") | |
# 250 random draws | |
N <- 250 | |
idxs <- sample(length(alpha), 250) | |
ggplot(data.frame(x = x, y = y), aes(x = x, y = y)) + | |
geom_abline(data = data.frame(alpha=alpha[idxs], beta=beta[idxs]), | |
aes(intercept = alpha, slope = beta), | |
color = "gray", alpha = 0.1) + | |
# posterior mean | |
geom_abline(intercept = mean(alpha), | |
slope = mean(beta), | |
color = "black", size = 1) + | |
# plot data | |
geom_point(color = "steelblue", size = 2) + | |
theme_bw() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"N": 10, | |
"x": [ | |
1, | |
2, | |
3, | |
4, | |
5, | |
6, | |
7, | |
8, | |
9, | |
10 | |
], | |
"y": [ | |
3.5164361480858806, | |
1.9422090649104387, | |
3.856878064212197, | |
5.8081366125433025, | |
7.727339580090061, | |
7.974795841003987, | |
9.775364868869321, | |
10.737390454859584, | |
12.557258326283772, | |
15.382774755732974 | |
] | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# simulate regression data from known parameters | |
import numpy as np | |
# "true" values of the parameters | |
beta = 1.25 | |
alpha = -0.1 | |
sigma = 1.6 | |
N = 10 | |
x = np.arange(1, N+1) | |
y = np.random.normal(alpha + beta * x, sigma) | |
data = {"N":N, "x":x, "y":y} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# simulate regression data from known parameters | |
# "true" values of the parameters | |
beta <- 1.25 | |
alpha <- -0.1 | |
sigma <- 1.6 | |
N <- 10 | |
x <- 1:N | |
y <- rnorm(N, alpha + beta * x, sigma) | |
data <- list(N=N, x=x, y=y) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data { | |
int<lower=0> N; | |
vector[N] x; | |
vector[N] y; | |
} | |
parameters { | |
real alpha; | |
real beta; | |
real<lower=0> sigma; | |
} | |
model { | |
y ~ normal(alpha + beta * x, sigma); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment