Created
August 14, 2024 22:17
-
-
Save WayneAHof/eddf72c11f6b6b008d1e56b88d164b4a to your computer and use it in GitHub Desktop.
Sample script to create ggplots incorporating RMSE, MBE and NSE (based on COD method) plus an example of how to create an animated plot and interactive plot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Libraries ---- | |
library(dplyr) | |
library(ggplot2) # Plotting data | |
library(ggrepel) # Prevent overlapping text labels | |
library(Metrics) # Calculate Statistics | |
library(plotly) # Interactive plots | |
library(gganimate) # Animate plots | |
# Sample Statistical Plots ---- | |
# Create sample data | |
set.seed(123) # For reproducibility | |
sample_data <- data.frame( | |
source = rep(c("Source A", "Source B"), each = 10), | |
observed_data = c(rnorm(10, mean = 8000, sd = 500), rnorm(10, mean = 8500, sd = 600)), | |
model_data = c(rnorm(10, mean = 8200, sd = 500), rnorm(10, mean = 8600, sd = 600)), | |
time = rep(1:10, 2) | |
) | |
# Simplified RMSE, NSE, and MBE calculations in one step | |
metrics_data <- sample_data %>% | |
group_by(source) %>% | |
summarise( | |
rmse = Metrics::rmse(observed_data, model_data), | |
nse = 1 - sum((model_data - observed_data)^2) / sum((observed_data - mean(observed_data))^2), | |
mbe = mean(model_data - observed_data) | |
) | |
# Determine the range for axes | |
range_vals <- range(c(sample_data$model_data, sample_data$observed_data)) | |
# Plot the data | |
ggplot(sample_data, aes(x = model_data, y = observed_data, colour = source)) + | |
geom_point(size = 4) + | |
geom_smooth(method = "lm", se = FALSE) + | |
geom_abline(intercept = 0, slope = 1, linetype = "dashed") + | |
labs(x = "Modelled Values", y = "Observed Values", colour = "Source") + | |
geom_text_repel( | |
data = metrics_data, | |
aes(x = range_vals[2], y = range_vals[2], label = paste("RMSE:", round(rmse, 2))), | |
hjust = 1, vjust = 1, direction = "y" | |
) + | |
geom_text_repel( | |
data = metrics_data, | |
aes(x = range_vals[1], y = range_vals[2], label = paste("NSE:", round(nse, 2))), | |
hjust = 0, vjust = 1, direction = "y" | |
) + | |
geom_text_repel( | |
data = metrics_data, | |
aes(x = range_vals[1], y = range_vals[1], label = paste("MBE:", round(mbe, 2))), | |
hjust = 0, vjust = 0, direction = "y" | |
) + | |
coord_equal() + | |
theme_bw() + | |
lims(x = range_vals, y = range_vals) + | |
# ggtitle("Sample Data") + | |
guides( | |
colour = guide_legend(override.aes = list(linetype = NA, size = 4)), | |
shape = guide_legend(override.aes = list(size = 4)) | |
) | |
# Animated Plotting ---- | |
# Create the ggplot object | |
p <- ggplot(sample_data, aes(x = observed_data, y = model_data, color = source)) + | |
geom_point(size = 3) + | |
labs( | |
title = "Observed vs. Model Data", | |
subtitle = "Time: {frame_time}", | |
x = "Observed Data", | |
y = "Model Data" | |
) + | |
theme_minimal() + | |
transition_time(time) + | |
ease_aes("linear") | |
# Animate the plot | |
animate(p, nframes = 100, fps = 10, width = 700, height = 700) | |
# Save the animation as a GIF (optional) | |
anim_save("observed_vs_model_animation.gif", animation = last_animation()) | |
# Interactive Plotting ---- | |
q <- ggplot(sample_data, aes(x = model_data, y = observed_data, colour = source)) + | |
geom_point(size = 4) + | |
geom_smooth(method = "lm", se = FALSE) + | |
geom_abline(intercept = 0, slope = 1, linetype = "dashed") + | |
labs(x = "Modelled Values", y = "Observed Values", colour = "Source") + | |
coord_equal() + | |
theme_bw() + | |
lims(x = range_vals, y = range_vals) + | |
ggtitle("Sample Data") + | |
guides( | |
colour = guide_legend(override.aes = list(linetype = NA, size = 4)), | |
shape = guide_legend(override.aes = list(size = 4)) | |
) | |
ggplotly(q) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment