-
-
Save WeakKnight/2ff439275b430950df6d317527782ee0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// smallgdpt: a simple implementation of gradient domain path tracing | |
// https://mediatech.aalto.fi/publications/graphics/GPT/ | |
// adapted from smallpt by Kevin Beason http://www.kevinbeason.com/smallpt/ | |
// and a screened poisson solver by Pravin Bhat http://grail.cs.washington.edu/projects/screenedPoissonEq/ | |
// to build, type: g++ -o smallgdpt -fopenmp -O3 smallgdpt.cpp -L/usr/local/lib -lm -lfftw3 | |
// you will need fftw3 http://www.fftw.org/ to compile | |
// usage: ./smallgdpt [number of samples per pixel] | |
#include <fftw3.h> | |
#include <math.h> | |
#include <stdlib.h> | |
#include <stdio.h> | |
#include <string.h> | |
const int MAX_DEPTH = 32; | |
struct Vec { | |
double x, y, z; // position, also color (r,g,b) | |
Vec(double x_=0, double y_=0, double z_=0){ x=x_; y=y_; z=z_; } | |
Vec operator+(const Vec &b) const { return Vec(x+b.x,y+b.y,z+b.z); } | |
Vec operator-(const Vec &b) const { return Vec(x-b.x,y-b.y,z-b.z); } | |
Vec operator-() const {return Vec(-x,-y,-z);} | |
Vec operator*(double b) const { return Vec(x*b,y*b,z*b); } | |
Vec mult(const Vec &b) const { return Vec(x*b.x,y*b.y,z*b.z); } | |
Vec& norm(){ return *this = *this * (1/sqrt(x*x+y*y+z*z)); } | |
double dot(const Vec &b) const { return x*b.x+y*b.y+z*b.z; } // cross: | |
Vec operator%(Vec&b){return Vec(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);} | |
double max() const {return x>y && x>z ? x : y > z ? y : z;} | |
}; | |
struct Ray { Vec o, d; Ray(Vec o_, Vec d_) : o(o_), d(d_) {} }; | |
enum Refl_t { DIFF, SPEC, REFR }; // material types | |
struct Sphere { | |
double rad; // radius | |
Vec p, e, c; // position, emission, color | |
Refl_t refl; // reflection type (DIFFuse, SPECular, REFRactive) | |
Sphere(double rad_, Vec p_, Vec e_, Vec c_, Refl_t refl_): | |
rad(rad_), p(p_), e(e_), c(c_), refl(refl_) {} | |
double intersect(const Ray &r) const { // returns distance, 0 if nohit | |
Vec op = p-r.o; // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0 | |
double t, eps=1e-4, b=op.dot(r.d), det=b*b-op.dot(op)+rad*rad; | |
if (det<0) return 0; else det=sqrt(det); | |
return (t=b-det)>eps ? t : ((t=b+det)>eps ? t : 0); | |
} | |
}; | |
int width = 1024; int height = 768; | |
Ray cam(Vec(50,50,295.6), Vec(0,-0.042612,-1).norm()); // cam pos, dir | |
Vec cx=Vec(width*.5135/height), cy=(cx%cam.d).norm()*.5135; | |
Sphere spheres[] = {//Scene: radius, position, emission, color, material | |
Sphere(1e5, Vec( 1e5+1,40.8,81.6), Vec(),Vec(.75,.25,.25),DIFF),//Left | |
Sphere(1e5, Vec(-1e5+99,40.8,81.6),Vec(),Vec(.25,.25,.75),DIFF),//Rght | |
Sphere(1e5, Vec(50,40.8, 1e5), Vec(),Vec(.75,.75,.75),DIFF),//Back | |
Sphere(1e5, Vec(50, 1e5, 81.6), Vec(),Vec(.75,.75,.75),DIFF),//Botm | |
Sphere(1e5, Vec(50,-1e5+81.6,81.6),Vec(),Vec(.75,.75,.75),DIFF),//Top | |
Sphere(16.5,Vec(27,16.5,47), Vec(),Vec(1.0,1.0,1.0)*.999, SPEC),//Mirr | |
Sphere(16.5,Vec(73,16.5,78), Vec(),Vec(1.0,1.0,1.0)*.999, REFR),//Glas | |
Sphere(600, Vec(50,681.6-.27,81.6),Vec(12,12,12), Vec(), DIFF) //Lite | |
}; | |
struct PathVert { | |
Vec p; Vec n; int id; | |
}; | |
struct Path { | |
PathVert verts[MAX_DEPTH]; | |
double rnds[2*MAX_DEPTH]; | |
int vertCount; | |
int x, y; | |
}; | |
inline bool intersect(const Ray &r, double &t, int &id){ | |
double n=sizeof(spheres)/sizeof(Sphere), d, inf=t=1e20; | |
for(int i=int(n);i--;) if((d=spheres[i].intersect(r))&&d<t){t=d;id=i;} | |
return t<inf; | |
} | |
Vec reflect(const Vec &d, const Vec &n) { | |
return d - n * 2.0 * n.dot(d); | |
} | |
Ray sampleBSDF(const Ray &ray, const Sphere &obj, const PathVert &vert, double u0, double u1) { | |
if (obj.refl == DIFF) { | |
double r1=2*M_PI*u0, r2=u1, r2s=sqrt(r2); | |
Vec nl=vert.n.dot(ray.d)<0?vert.n:vert.n*-1; // flip normal if needed | |
Vec w=nl, u=((fabs(w.x)>.1?Vec(0,1):Vec(1))%w).norm(), v=w%u; | |
Vec d = (u*cos(r1)*r2s + v*sin(r1)*r2s + w*sqrt(1-r2)).norm(); | |
return Ray(vert.p, d); | |
} else if (obj.refl == SPEC) { | |
return Ray(vert.p, reflect(ray.d, vert.n)); | |
} else { //REFR | |
Ray reflRay(vert.p, reflect(ray.d, vert.n)); | |
bool into = vert.n.dot(ray.d)<0; | |
Vec nl = into?vert.n:vert.n*-1; | |
double nc=1, nt=1.5, nnt=into?nc/nt:nt/nc, ddn=ray.d.dot(nl), cos2t; | |
if ((cos2t = 1-nnt*nnt*(1-ddn*ddn)) < 0) { // total internal reflection | |
return reflRay; | |
} | |
Vec tdir = (ray.d*nnt - vert.n*((into?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm(); | |
double a=nt-nc, b=nt+nc, R0=a*a/(b*b), c = 1-(into?-ddn:tdir.dot(vert.n)); | |
double Re=R0+(1-R0)*c*c*c*c*c, P=.25+.5*Re; // schlick | |
if (u0 < P) { | |
return reflRay; | |
} else { | |
return Ray(vert.p, tdir); | |
} | |
} | |
return Ray(Vec(), Vec()); | |
} | |
double BSDFProb(const Refl_t &refl, const Vec &wi, const Vec &n, const Vec &wo) { | |
if (refl == DIFF) { | |
double cosTheta = fabs(wo.dot(n)); | |
return (cosTheta/M_PI); | |
} else if (refl == SPEC) { | |
return 1.0; | |
} else { //REFR | |
bool refl = wi.dot(n) * wo.dot(n) > 0.0; | |
bool into = n.dot(wi) > 0; | |
Vec nl = into ? n : n*-1; // flip normal if needed | |
Vec d = -wi; | |
double nc=1, nt=1.5, nnt=into?nc/nt:nt/nc, ddn=d.dot(nl), cos2t; | |
double P = refl ? 1.0 : 0.0; | |
if ((cos2t = 1-nnt*nnt*(1-ddn*ddn)) > 0) { | |
Vec tdir = (d*nnt - n*((into?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm(); | |
double a=nt-nc, b=nt+nc, R0=a*a/(b*b), c = 1-(into?-ddn:tdir.dot(n)); | |
double Re=R0+(1-R0)*c*c*c*c*c; | |
P = .25+.5*Re; if (!refl) P = 1.0 - P; | |
} | |
return P; | |
} | |
return 0.0; | |
} | |
// generate a light path from scratch | |
bool generatePath(int x, int y, unsigned short *rng, Path &path) { | |
path.x = x; path.y = y; | |
path.rnds[0] = erand48(rng); path.rnds[1] = erand48(rng); | |
Vec d = cx*( (path.rnds[0] + x)/width - .5) + | |
cy*( (path.rnds[1] + y)/height - .5) + cam.d; | |
// Camera rays are pushed forward to start in interior | |
Ray ray(cam.o+d*140, d.norm()); | |
path.vertCount = 0; | |
for (int depth = 1; depth <= MAX_DEPTH; depth++) { | |
double t; int id = -1; | |
if (!intersect(ray, t, id)) return false; | |
const Sphere &obj = spheres[id]; | |
PathVert vert; | |
vert.p = ray.o + ray.d*t; vert.n = (vert.p - obj.p).norm(); vert.id = id; | |
path.verts[depth-1] = vert; path.vertCount++; | |
double p = obj.c.max(); | |
if (p <= 0.0) return true; // assume refl=0 -> light source | |
if (depth == MAX_DEPTH) return false; | |
path.rnds[2*depth] = erand48(rng); path.rnds[2*depth+1] = erand48(rng); | |
ray = sampleBSDF(ray, obj, vert, path.rnds[2*depth], path.rnds[2*depth+1]); | |
} | |
return false; | |
} | |
// "shift" a light path to a specific pixel | |
bool shiftPath(int x, int y, const Path &basePath, Path &offsetPath, double &jacobian) { | |
offsetPath.x = x; offsetPath.y = y; | |
Vec baseWi = -(cx*( (basePath.rnds[0] + basePath.x)/width - .5) + | |
cy*( (basePath.rnds[1] + basePath.y)/height - .5) + cam.d).norm(); | |
Vec d = cx*( (basePath.rnds[0] + x)/width - .5) + | |
cy*( (basePath.rnds[1] + y)/height - .5) + cam.d; | |
Ray ray(cam.o+d*140, d.norm()); | |
Vec wi = -ray.d; | |
offsetPath.vertCount = basePath.vertCount; | |
memcpy(offsetPath.verts, basePath.verts, sizeof(PathVert) * basePath.vertCount); | |
jacobian = 1.0; | |
for (int vertId = 0; vertId < basePath.vertCount; vertId++) { | |
int depth = vertId + 1; | |
double t; int id = -1; | |
if (!intersect(ray, t, id)) return false; | |
const Sphere &obj = spheres[id]; | |
const Sphere &baseObj = spheres[basePath.verts[vertId].id]; | |
if (obj.refl != baseObj.refl) return false; | |
PathVert vert; | |
vert.p = ray.o + ray.d*t; vert.n = (vert.p - obj.p).norm(); vert.id = id; | |
offsetPath.verts[vertId] = vert; | |
if (vertId == basePath.vertCount - 1) break; | |
if (obj.refl == DIFF && spheres[basePath.verts[vertId + 1].id].refl == DIFF) { | |
// connect back to base path, jacobian = ratio of geometry term | |
if (!intersect(Ray(vert.p, (basePath.verts[depth].p - vert.p).norm()), t, id) || | |
id != basePath.verts[vertId + 1].id) return false; | |
Vec baseP0 = basePath.verts[depth - 1].p; | |
Vec p1 = basePath.verts[depth].p; | |
Vec baseN0 = basePath.verts[depth - 1].n; | |
Vec n1 = basePath.verts[depth].n; | |
Vec baseDir = p1 - baseP0; | |
double baseDist2 = baseDir.dot(baseDir); | |
baseDir = baseDir * (1.0 / sqrt(baseDist2)); | |
double baseGeom = fabs(baseDir.dot(n1)) * fabs(baseDir.dot(baseN0)) / baseDist2; | |
Vec shiftDir = p1 - vert.p; | |
double shiftDist2 = shiftDir.dot(shiftDir); | |
shiftDir = shiftDir * (1.0 / sqrt(shiftDist2)); | |
double shiftGeom = fabs(shiftDir.dot(n1)) * fabs(shiftDir.dot(vert.n)) / shiftDist2; | |
jacobian *= (shiftGeom / baseGeom); | |
return true; | |
} | |
// copy the random numbers used to sample BRDF, jacobian = ratio of inverse PDF | |
// this should be simpler than the half-vector based shift described in the paper | |
ray = sampleBSDF(ray, obj, vert, basePath.rnds[2*depth], basePath.rnds[2*depth+1]); | |
Vec baseWo = (basePath.verts[vertId + 1].p - basePath.verts[vertId].p).norm(); | |
double basePDF = BSDFProb(baseObj.refl, baseWi, basePath.verts[vertId].n, baseWo); | |
double shiftPDF = BSDFProb(obj.refl, wi, vert.n, ray.d); | |
if (shiftPDF <= 0.0) return false; | |
jacobian *= (basePDF / shiftPDF); | |
baseWi = -baseWo; wi = -ray.d; | |
} | |
const Sphere &obj = spheres[offsetPath.verts[offsetPath.vertCount-1].id]; | |
double p = obj.c.max(); | |
return p <= 0.0; // assume refl=0 -> light source | |
} | |
// path contribution in solid angle domain | |
Vec pathContrib(const Path &path) { | |
Vec throughput(1,1,1); | |
Vec wi = -(cx*( (path.rnds[0] + path.x)/width - .5) + | |
cy*( (path.rnds[1] + path.y)/height - .5) + cam.d).norm(); | |
for (int vert = 0; vert < path.vertCount - 1; vert++) { | |
const PathVert &currVert = path.verts[vert]; | |
const PathVert &nextVert = path.verts[vert + 1]; | |
Vec wo = (nextVert.p - currVert.p).norm(); | |
double cosTheta = fabs(wo.dot(currVert.n)); | |
const Sphere &obj = spheres[path.verts[vert].id]; | |
if (cosTheta <= 1e-6) return Vec(); | |
if (obj.refl == DIFF) { | |
throughput = throughput.mult(obj.c*(cosTheta/M_PI)); | |
} else if (obj.refl == SPEC) { | |
throughput = throughput.mult(obj.c); | |
} else { //REFR | |
bool refl = wi.dot(currVert.n) * wo.dot(currVert.n) > 0.0; | |
bool into = currVert.n.dot(wi) > 0; | |
Vec d = -wi; | |
Vec nl = into ? currVert.n : currVert.n*-1; // flip normal if needed | |
double nc=1, nt=1.5, nnt=into?nc/nt:nt/nc, ddn=d.dot(nl), cos2t; | |
double fresnel = refl ? 1.0 : 0.0; | |
if ((cos2t = 1-nnt*nnt*(1-ddn*ddn)) > 0) { | |
Vec tdir = (d*nnt - currVert.n*((into?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm(); | |
double a=nt-nc, b=nt+nc, R0=a*a/(b*b), c = 1-(into?-ddn:tdir.dot(currVert.n)); | |
double Re=R0+(1-R0)*c*c*c*c*c,Tr=1-Re; | |
fresnel = refl ? Re : Tr; | |
} | |
throughput = throughput.mult(obj.c * fresnel); | |
} | |
wi = -wo; | |
} | |
const Sphere &obj = spheres[path.verts[path.vertCount-1].id]; | |
return throughput.mult(obj.e); | |
} | |
// path probability in solid angle domain | |
double pathProb(const Path &path) { | |
Vec wi = -(cx*( (path.rnds[0] + path.x)/width - .5) + | |
cy*( (path.rnds[1] + path.y)/height - .5) + cam.d).norm(); | |
double prob = 1.0; | |
for (int vert = 0; vert < path.vertCount - 1; vert++) { | |
const PathVert &currVert = path.verts[vert]; | |
const PathVert &nextVert = path.verts[vert + 1]; | |
Vec wo = (nextVert.p - currVert.p).norm(); | |
double cosTheta = fabs(wo.dot(currVert.n)); | |
const Sphere &obj = spheres[path.verts[vert].id]; | |
if (cosTheta <= 1e-6) return 0.0; | |
prob *= BSDFProb(obj.refl, wi, currVert.n, wo); | |
if (prob <= 0.0) return 0.0; | |
wi = -wo; | |
} | |
return prob; | |
} | |
// screened Poisson solver from http://grail.cs.washington.edu/projects/screenedPoissonEq/ | |
void fourierSolve(int width, int height, | |
const double* imgData, const double* imgGradX, | |
const double* imgGradY, double dataCost, | |
double* imgOut) { | |
int nodeCount = width * height; | |
double* fftBuff = (double*) fftw_malloc(sizeof(*fftBuff) * nodeCount); | |
//compute two 1D lookup tables for computing the DCT of a 2D Laplacian on the fly | |
double* ftLapY = (double*) fftw_malloc(sizeof(*ftLapY) * height); | |
double* ftLapX = (double*) fftw_malloc(sizeof(*ftLapX) * width); | |
for(int x = 0; x < width; x++) { | |
ftLapX[x] = 2.0 * cos(M_PI * x / (width - 1)); | |
} | |
for(int y = 0; y < height; y++) { | |
ftLapY[y] = -4.0 + (2.0 * cos(M_PI * y / (height - 1))); | |
} | |
//Create a DCT-I plan for, which is its own inverse. | |
fftw_plan fftPlan; | |
fftPlan = fftw_plan_r2r_2d(height, width, | |
fftBuff, fftBuff, | |
FFTW_REDFT00, FFTW_REDFT00, FFTW_ESTIMATE); //use FFTW_PATIENT when plan can be reused | |
for(int iChannel = 0; iChannel < 3; iChannel++) { | |
int nodeAddr = 0; | |
int pixelAddr = iChannel; | |
int rightPixelAddr = 3 + iChannel; | |
int topPixelAddr = (width * 3) + iChannel; | |
double dcSum = 0.0; | |
// compute h_hat from u, gx, gy (see equation 48 in Bhat's paper), as well as the DC term of u's DCT. | |
for(int y = 0; y < height; y++) | |
for(int x = 0; x < width; x++, | |
nodeAddr++, pixelAddr += 3, rightPixelAddr += 3, topPixelAddr += 3) { | |
// Compute DC term of u's DCT without computing the whole DCT. | |
double dcMult = 1.0; | |
if((x > 0) && (x < width - 1)) | |
dcMult *= 2.0; | |
if((y > 0) && (y < height - 1)) | |
dcMult *= 2.0; | |
dcSum += dcMult * imgData[pixelAddr]; | |
fftBuff[nodeAddr] = dataCost * imgData[pixelAddr]; | |
// Subtract g^x_x and g^y_y, with boundary factor of -2.0 to account for boundary reflections implicit in the DCT | |
if((x > 0) && (x < width - 1)) | |
fftBuff[nodeAddr] -= (imgGradX[rightPixelAddr] - imgGradX[pixelAddr]); | |
else | |
fftBuff[nodeAddr] -= (-2.0 * imgGradX[pixelAddr]); | |
if((y > 0) && (y < height - 1)) | |
fftBuff[nodeAddr] -= (imgGradY[topPixelAddr] - imgGradY[pixelAddr]); | |
else | |
fftBuff[nodeAddr] -= (-2.0 * imgGradY[pixelAddr]); | |
} | |
//transform h_hat to H_hat by taking the DCT of h_hat | |
fftw_execute(fftPlan); | |
//compute F_hat using H_hat (see equation 29 in Bhat's paper) | |
nodeAddr = 0; | |
for(int y = 0; y < height; y++) | |
for(int x = 0; x < width; x++, nodeAddr++) { | |
float ftLapResponse = ftLapY[y] + ftLapX[x]; | |
fftBuff[nodeAddr] /= (dataCost - ftLapResponse); | |
} | |
/* Set the DC term of the solution to the value computed above (i.e., the DC term of imgData). | |
* set dcSum to the desired average when dataCost=0 | |
*/ | |
fftBuff[0] = dcSum; | |
//transform F_hat to f_hat by taking the inverse DCT of F_hat | |
fftw_execute(fftPlan); | |
double fftDenom = 4.0 * (width - 1) * (height - 1); | |
pixelAddr = iChannel; | |
for(int iNode = 0; iNode < nodeCount; iNode++, pixelAddr += 3) { | |
imgOut[pixelAddr] = fftBuff[iNode] / fftDenom; | |
} | |
} | |
fftw_free(fftBuff); | |
fftw_free(ftLapX); | |
fftw_free(ftLapY); | |
fftw_destroy_plan(fftPlan); | |
} | |
int main(int argc, char *argv[]){ | |
int samps = argc==2 ? atoi(argv[1]) : 4; // # samples | |
Vec *c=new Vec[width * height]; | |
Vec *cx0=new Vec[width * height]; | |
Vec *cy0=new Vec[width * height]; | |
Vec *cx1=new Vec[width * height]; | |
Vec *cy1=new Vec[width * height]; | |
#pragma omp parallel for schedule(dynamic, 1) // OpenMP | |
for (int y=0; y<height; y++){ // Loop over image rows | |
fprintf(stderr,"\rRendering (%d spp) %5.2f%%",samps,100.*y/(height-1)); | |
for (unsigned short x=0, rng[3]={0,0,y*y*y}; x<width; x++) { // Loop cols | |
Vec r, rdx0, rdy0, rdx1, rdy1; | |
for (int s=0; s<samps; s++){ | |
Path path, oPath; double jacobian; | |
if(generatePath(x, y, rng, path)) { | |
Vec contrib = pathContrib(path); | |
double prob = pathProb(path); | |
if (prob > 0.0) { | |
Vec contribX0, contribY0; | |
Vec contribX1, contribY1; | |
double wX0 = 1, wY0 = 1; | |
double wX1 = 1, wY1 = 1; | |
r = r + (contrib * (1.0 / prob)) * (1.0 / (double)samps); | |
if(shiftPath(x-1, y, path, oPath, jacobian)) { | |
contribX0 = pathContrib(oPath) * jacobian; | |
double pX0 = pathProb(oPath) * jacobian; | |
wX0 = prob / (prob + pX0); | |
} | |
if(shiftPath(x, y+1, path, oPath, jacobian)) { | |
contribY0 = pathContrib(oPath) * jacobian; | |
double pY0 = pathProb(oPath) * jacobian; | |
wY0 = prob / (prob + pY0); | |
} | |
if(shiftPath(x+1, y, path, oPath, jacobian)) { | |
contribX1 = pathContrib(oPath) * jacobian; | |
double pX1 = pathProb(oPath) * jacobian; | |
wX1 = prob / (prob + pX1); | |
} | |
if(shiftPath(x, y-1, path, oPath, jacobian)) { | |
contribY1 = pathContrib(oPath) * jacobian; | |
double pY1 = pathProb(oPath) * jacobian; | |
wY1 = prob / (prob + pY1); | |
} | |
rdx0 = rdx0 + (contrib - contribX0) * (wX0 / (prob * (double)samps)); | |
rdy0 = rdy0 + (contrib - contribY0) * (wY0 / (prob * (double)samps)); | |
rdx1 = rdx1 + (contribX1 - contrib) * (wX1 / (prob * (double)samps)); | |
rdy1 = rdy1 + (contribY1 - contrib) * (wY1 / (prob * (double)samps)); | |
} | |
} | |
} | |
int i = (height - y - 1) * width + x; | |
c[i] = c[i] + r; | |
cx0[i] = cx0[i] + rdx0; cy0[i] = cy0[i] + rdy0; | |
cx1[i] = cx1[i] + rdx1; cy1[i] = cy1[i] + rdy1; | |
} | |
} | |
Vec *cx=new Vec[width * height], *cy = new Vec[width * height]; | |
for (int y=0; y<height; y++) | |
for (int x=0; x<width; x++) { | |
int i = y * width + x; | |
if (x == 0) cx[i] = cx0[i]; | |
else cx[i] = cx0[i] + cx1[i-1]; | |
if (y == 0) cy[i] = cy0[i]; | |
else cy[i] = cy0[i] + cy1[i-width]; | |
} | |
Vec *out=new Vec[width * height]; | |
fourierSolve(width, height, (double*)c, (double*)cx, (double*)cy, 0.04, (double*)out); | |
int npixel = 3 * width * height; | |
float *fc = new float[npixel], *fout = new float[npixel]; | |
float *fcx = new float[npixel], *fcy = new float[npixel]; | |
for(int i = 0; i < width * height; i++) { //pfm requires single precision | |
fc[3*i] = c[i].x; fc[3*i+1] = c[i].y; fc[3*i+2] = c[i].z; | |
fout[3*i] = out[i].x; fout[3*i+1] = out[i].y; fout[3*i+2] = out[i].z; | |
fcx[3*i] = fabs(cx[i].x); fcx[3*i+1] = fabs(cx[i].y); fcx[3*i+2] = fabs(cx[i].z); | |
fcy[3*i] = fabs(cy[i].x); fcy[3*i+1] = fabs(cy[i].y); fcy[3*i+2] = fabs(cy[i].z); | |
} | |
FILE *f = fopen("image.pfm", "w"); // Write image to PFM files. | |
fprintf(f, "PF\n%d %d\n%d\n", width, height, -1); | |
fwrite(fc, sizeof(float), npixel, f); fclose(f); | |
f = fopen("image_dx.pfm", "w"); | |
fprintf(f, "PF\n%d %d\n%d\n", width, height, -1); | |
fwrite(fcx, sizeof(float), npixel, f); fclose(f); | |
f = fopen("image_dy.pfm", "w"); | |
fprintf(f, "PF\n%d %d\n%d\n", width, height, -1); | |
fwrite(fcy, sizeof(float), npixel, f); fclose(f); | |
f = fopen("image_poisson.pfm", "w"); | |
fprintf(f, "PF\n%d %d\n%d\n", width, height, -1); | |
fwrite(fout, sizeof(float), npixel, f); fclose(f); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment