-
-
Save WesleyYue/27352f8cf5a835d05b558e8fdda9b59d to your computer and use it in GitHub Desktop.
Iterative LQR in OpenAI's CartPole Environment
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/local/bin/python3 | |
import gym | |
import numpy as np | |
env = gym.make('CartPole-v0').env | |
x = env.reset() | |
# x, xdot, theta, thetadot | |
gamma = (4.0 / 3.0 - env.masspole / env.total_mass) | |
a = -env.gravity * env.masspole / (env.total_mass * gamma) | |
b = (1.0 / env.total_mass * (1 + env.masspole / (env.total_mass * gamma))) | |
c = env.gravity / (env.length * gamma) | |
d = -1.0 / (env.total_mass * env.length * gamma) | |
tau = env.tau | |
F = np.array([ | |
[1, tau, 0, 0, 0], | |
[0, 1, tau * a, 0, tau * b], | |
[0, 0, 1, tau, 0], | |
[0, 0, tau * c, 1, tau * d], | |
]) | |
C = np.array([ | |
[1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 1], | |
]) | |
c = np.array([0, 0, 0, 0, 0]).T | |
frame = 0 | |
done = False | |
i = 0 | |
while 1: | |
i += 1 | |
Ks = [] | |
T = 100 | |
# V = np.zeros((4, 4)) | |
# v = np.zeros((4)) | |
V = C[:4, :4] | |
v = np.zeros((4)) | |
for t in range(T, -1, -1): | |
# Qt | |
Qt = C + np.matmul(F.T, np.matmul(V, F)) | |
qt = c + np.matmul(F.T, v) | |
Quu = Qt[-1:,-1:] | |
Qux = Qt[-1:,:-1] | |
Qxu = Qt[:-1, -1:] | |
qu = qt[-1:] | |
Qut_inv = np.linalg.inv(Quu) | |
Kt = -np.matmul(Qut_inv, Qux) | |
kt = -np.matmul(Qut_inv, qu) | |
Ks.append((Kt, kt)) | |
V = Qt[:4, :4] + np.matmul(Qxu, Kt) + np.matmul(Kt.T, Qux) + np.matmul(Kt.T, np.matmul(Quu, Kt)) | |
v = qt[:4] + np.matmul(Qxu, kt) + np.matmul(Kt.T, qu) + np.matmul(Kt.T, np.matmul(Quu, kt)) | |
Kt, kt = Ks[-1] | |
ut = np.matmul(Kt, x.reshape((1, -1)).T) + kt | |
if ut > 0.0: | |
ut = env.force_mag | |
action = 1 | |
else: | |
ut = -env.force_mag | |
action = 0 | |
xu = np.hstack([x, ut]) | |
my_guess = np.matmul(F, xu.T) | |
x, reward, done, info = env.step(action) | |
frame += 1 | |
env.render() | |
print(frame) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment