Last active
December 18, 2015 20:28
-
-
Save WillNess/5840225 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| == One-liners == | |
| primes = [n | n<-[2..], not $ elem n [j*k | j<-[2..n-1], k<-[2..n-1]]] | |
| primes = [n | n<-[2..], not $ elem n [j*k | j<-[2..n-1], k<-[2..min j (n`div`j)]]] | |
| primes = nubBy (((==0).).rem) [2..] | |
| primes = [n | n<-[2..], all ((> 0).rem n) [2..n-1]] | |
| primes = 2 : [n | n<-[3,5..], all ((> 0).rem n) [3,5..floor.sqrt$fromIntegral n]] | |
| primes = 2 : [n | n<-[3..], all ((> 0).rem n) $ takeWhile ((<= n).(^2)) primes] | |
| primes = 2 : 3 : [n | n<-[5,7..], | |
| foldr (\p r-> p*p>n || (rem n p>0 && r)) True $ tail primes] | |
| primes = 2 : fix (\xs-> 3 : [n | n<-[5,7..], | |
| foldr (\p r-> p*p>n || (rem n p>0 && r)) True xs]) | |
| primes = map head $ iterate (\(x:xs)-> filter ((> 0).(`rem`x)) xs) [2..] | |
| primes = 2 : unfoldr (\(x:xs)-> Just(x, filter ((> 0).(`rem`x)) xs)) [3,5..] | |
| primesTo n = foldl (\r x-> r `minus` [x*x, x*x+2*x..]) (2:[3,5..n]) | |
| [3,5..floor.sqrt$fromIntegral n] | |
| primesTo n = 2 : foldr (\r z-> if (head r^2) <= n then head r : z else r) [] | |
| (fix $ \rs-> [3,5..n] : [t `minus` [p*p, p*p+2*p..] | (p:t)<- rs]) | |
| primes = 2 : concat (unfoldr (\(xs,p:ps)-> let (h,t)=span (< p*p) xs in | |
| Just (h, (filter ((> 0).(`rem`p)) t, ps))) ([3,5..],[3,5..])) | |
| primes = 2 : 3 : concat (unfoldr (\(xs,p:ps)-> let (h,t)=span (< p*p) xs in | |
| Just (h, (t `minus` [p*p, p*p+2*p..], ps))) ([5,7..],tail primes)) | |
| primes = concatMap snd $ iterate (\((n, p:t@(q:_)),_) -> ((n+1,t), | |
| [x | let lst = take n $ tail primes, x <- [p*p+2, p*p+4 .. q*q-2], | |
| all ((/= 0).rem x) $ lst])) ((1, tail primes), [2,3,5,7]) | |
| primes = concatMap snd $ iterate (\((n, p2:t@(q2:_)),_) -> ((n+1,t), | |
| minus [p2+2, p2+4 .. q2-2] $ foldi union [] [ [o, o+2*i .. q2-2] | | |
| i <- take n $ tail primes, let o=p2-rem (p2-i) (2*i)+2*i] )) | |
| ((1, map (^2) $ tail primes), [2,3,5,7]) | |
| primes = let { sieve (x:xs) = x : sieve [n | n <- xs, rem n x > 0] } in sieve [2..] | |
| primes = let { sieve xs (p:ps) | (h,t)<-span (< p*p) xs = | |
| h ++ sieve (filter ((> 0).(`rem` p)) t) ps } | |
| in 2 : 3 : sieve [5,7..] (tail primes) | |
| primes = let { sieve xs (p:ps) | (h,t)<-span (< p*p) xs = | |
| h ++ sieve (t `minus` [p*p, p*p+2*p..]) ps } | |
| in 2 : 3 : sieve [5,7..] (tail primes) | |
| ------------------------------------------------------------------------ | |
| primes = let { sieve x (p:ps) cs | (h,t)<-span (< p*p) cs = minus [x,x+2..p*p-2] h | |
| ++ sieve (p*p) ps (union t [p*p, p*p+2*p..]) } | |
| in 2 : 3 : sieve 5 (tail primes) [] | |
| primes = let { sieve x (p:ps) is = minus [x,x+2..p*p-2] (foldi union [] | |
| [[o, o+2*i..p*p-2] | i <- reverse is, -- let o=x-rem (x-i) (2*i) ]) | |
| -- let r=rem(x-i)(2*i);o=if r==0 then x else x-r+2*i ]) | |
| let o = ((x+i-1)`div`(2*i))*2*i + i ]) | |
| ++ sieve (p*p) ps (p:is) } | |
| in 2 : 3 : sieve 5 (tail primes) [] | |
| ------------------------------------------------------------------------ | |
| ------------------------------------------------------------------------ | |
| primes = let { sieve x (p:ps) cs | (h,t)<-span (< p*p) cs = minus [x+2,x+4..p*p-2] h | |
| ++ sieve (p*p) ps (union t [p*p+2*p, p*p+4*p..]) } | |
| in 2 : 3 : sieve 3 (tail primes) [] | |
| primes = let { sieve x (p:ps) is = minus [x+2,x+4..p*p-2] (foldi union [] | |
| [[o, o+2*i..p*p-2] | i <- reverse is, let o=x-rem (x-i) (2*i)+2*i ]) | |
| ++ sieve (p*p) ps (p:is) } | |
| in 2 : 3 : sieve 3 (tail primes) [] | |
| ------------------------------------------------------------------------ | |
| primes = 2 : minus [3..] (foldr (\(x:xs)->(x:).union xs) [] | |
| $ map (\x->[x*x, x*x+x..]) primes) | |
| primes = 2 : minus [3,5..] (foldi (\(x:xs)->(x:).union xs) [] | |
| $ map (\x->[x*x, x*x+2*x..]) [3,5..]) | |
| primes = 2 : _Y ( (3:) . gaps 5 -- unbounded Sieve of Eratosthenes | |
| . foldi (\(x:xs) ys-> x:union xs ys) [] | |
| . map (\p->[p*p, p*p+2*p..]) ) | |
| _Y g = g (_Y g) | |
| gaps x s@(c:cs) | x < c = x : gaps (x+2) s -- == minus [x,x+2..] s | |
| | otherwise = gaps (x+2) cs -- , when x <= c |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment