Skip to content

Instantly share code, notes, and snippets.

{{
config(
materialized='incremental'
)
}}
with orders as (
select * from {{ ref('stg__orders') }}
),
"""
Encrypts or Decrypts messages. For encryption:
python cipherize.py --message=test --action=encrypt
or
python3 cipherize.py --filepath /path/to/file --action encrypt
Decryption:
@pytest.mark.django_db
def test_data_2():
"""
Force overbooking of ships.
"""
name = 'test2'
f = Files.objects.create(name=name)
f.save()
demand_data = [
def optimize(data_models, train_limit, ob_cost_factor=2, container_cost_factor=10):
results = {}
containers = data_models['containers']
shippers = data_models['shippers']
orig_ports = data_models['orig_port']
transp = data_models['transp']
transp_train_map = data_models['transp_train_map']
shipper_trade_spaces = data_models['shipper_trade_spaces']
overbooking_spaces = shipper_trade_spaces.matrix
dest_shipper_map = data_models['dest_shipper_map']
import numpy as np
import cvxpy as cx
# Begin with variables
x_shippers = cx.Variable((4, 2), boolean=True, name='shippers')
x_transports = cx.Variable((4, 2), boolean=True, name='transports')
x_docks = cx.Variable((4, 2), boolean=True, name='docks')
# 'y' represents variables that are built by introducing an AND conjunction between
# 2 other variables.
import numpy as np
import cvxpy as cx
# Begin with the variables that describe the problem
x_shippers = cx.Variable((4, 2), boolean=True, name='shippers')
x_transports = cx.Variable((4, 2), boolean=True, name='transports')
# Data that helps implement the model
containers = np.array([[200, 0], [300, 1], [400, 0], [500, 1]])
import numpy as np
import cvxpy as cx
# First the data that sets the problem
container_costs = np.array([200, 300, 400, 500])
shippers_costs = np.array([100, 130])
shippers_spaces = np.array([2, 1])
# Main variable to be optimized
x_shippers = cx.Variable((4, 2), boolean=True, name='shippers')
Trade Shipper 1 2 3 4 ... 52
North Europe Shipper 0 7 7 6 5 ... 7
North America Shipper 1 8 8 8 9 ... 6
Far East Shipper 2 6 6 7 8 ... 9
Factory Trade Destine Port Shipper Modal Origin Port Transport Road Freight Shipper Freight
factory 0 Far East Hong Kong Shipper 0 Road Santos Third Party 6000 8000
factory 1 Mediterranean Barcelona Shipper 1 Train Santos Private 5000 9000
factory 2 North America Seattle Shipper 3 Road Santos Third Party 9000 5000
Container ID Factory Destination Worth Shipper Transportation Origin
0 Factory 0 Hong Kong 1000 ? ? ?
1 Factory 1 Barcelona 1 1200 ? ? ?
2 Factory 0 Seattle 2 1300 ? ? ?