-
-
Save WillieMaddox/3b1159baecb809b5fcb3a6154bc3cb0b to your computer and use it in GitHub Desktop.
# -*- coding: utf-8 -*- | |
import numpy as np | |
import xml.etree.ElementTree as ET | |
from pycocotools.coco import COCO | |
def convert_coco_bbox(size, box): | |
dw = 1. / size[0] | |
dh = 1. / size[1] | |
x = box[0] + box[2] / 2.0 | |
y = box[1] + box[3] / 2.0 | |
w = box[2] | |
h = box[3] | |
x = x * dw | |
w = w * dw | |
y = y * dh | |
h = h * dh | |
return x, y, w, h | |
def convert_bbox(size, box): | |
dw = 1. / size[0] | |
dh = 1. / size[1] | |
x = (box[0] + box[1]) / 2.0 | |
y = (box[2] + box[3]) / 2.0 | |
w = box[1] - box[0] | |
h = box[3] - box[2] | |
x = x * dw | |
w = w * dw | |
y = y * dh | |
h = h * dh | |
return x, y, w, h | |
def area(x): | |
if len(x.shape) == 1: | |
return x[0] * x[1] | |
else: | |
return x[:, 0] * x[:, 1] | |
def kmeans_iou(k, centroids, points, iter_count=0, iteration_cutoff=25, feature_size=13): | |
best_clusters = [] | |
best_avg_iou = 0 | |
best_avg_iou_iteration = 0 | |
npoi = points.shape[0] | |
area_p = area(points) # (npoi, 2) -> (npoi,) | |
while True: | |
cen2 = centroids.repeat(npoi, axis=0).reshape(k, npoi, 2) | |
cdiff = points - cen2 | |
cidx = np.where(cdiff < 0) | |
cen2[cidx] = points[cidx[1], cidx[2]] | |
wh = cen2.prod(axis=2).T # (k, npoi, 2) -> (npoi, k) | |
dist = 1. - (wh / (area_p[:, np.newaxis] + area(centroids) - wh)) # -> (npoi, k) | |
belongs_to_cluster = np.argmin(dist, axis=1) # (npoi, k) -> (npoi,) | |
clusters_niou = np.min(dist, axis=1) # (npoi, k) -> (npoi,) | |
clusters = [points[belongs_to_cluster == i] for i in range(k)] | |
avg_iou = np.mean(1. - clusters_niou) | |
if avg_iou > best_avg_iou: | |
best_avg_iou = avg_iou | |
best_clusters = clusters | |
best_avg_iou_iteration = iter_count | |
print("\nIteration {}".format(iter_count)) | |
print("Average iou to closest centroid = {}".format(avg_iou)) | |
print("Sum of all distances (cost) = {}".format(np.sum(clusters_niou))) | |
new_centroids = np.array([np.mean(c, axis=0) for c in clusters]) | |
isect = np.prod(np.min(np.asarray([centroids, new_centroids]), axis=0), axis=1) | |
aa1 = np.prod(centroids, axis=1) | |
aa2 = np.prod(new_centroids, axis=1) | |
shifts = 1 - isect / (aa1 + aa2 - isect) | |
# for i, s in enumerate(shifts): | |
# print("{}: Cluster size: {}, Centroid distance shift: {}".format(i, len(clusters[i]), s)) | |
if sum(shifts) == 0 or iter_count >= best_avg_iou_iteration + iteration_cutoff: | |
break | |
centroids = new_centroids | |
iter_count += 1 | |
# Get anchor boxes from best clusters | |
anchors = np.asarray([np.mean(cluster, axis=0) for cluster in best_clusters]) | |
anchors = anchors[anchors[:, 0].argsort()] | |
print("k-means clustering pascal anchor points (original coordinates) \ | |
\nFound at iteration {} with best average IoU: {} \ | |
\n{}".format(best_avg_iou_iteration, best_avg_iou, anchors*feature_size)) | |
return anchors | |
def load_pascal_dataset(datasets): | |
name = 'pascal' | |
data = [] | |
for year, image_set in datasets: | |
img_ids_filename = '%s/%s/VOCdevkit/VOC%s/ImageSets/Main/%s.txt' % (source_dir, name, year, image_set) | |
ifs_img_ids = open(img_ids_filename) | |
img_ids = ifs_img_ids.read().strip().split() | |
for image_id in img_ids: | |
anno_filename = '%s/%s/VOCdevkit/VOC%s/Annotations/%s.xml' % (source_dir, name, year, image_id) | |
ifs_anno = open(anno_filename) | |
tree = ET.parse(ifs_anno) | |
root = tree.getroot() | |
size = root.find('size') | |
w = int(size.find('width').text) | |
h = int(size.find('height').text) | |
for obj in root.iter('object'): | |
xmlbox = obj.find('bndbox') | |
b = (float(xmlbox.find('xmin').text), | |
float(xmlbox.find('xmax').text), | |
float(xmlbox.find('ymin').text), | |
float(xmlbox.find('ymax').text)) | |
bb = convert_bbox((w, h), b) | |
data.append(bb[2:]) | |
ifs_anno.close() | |
ifs_img_ids.close() | |
return np.array(data) | |
def load_coco_dataset(datasets): | |
name = 'coco' | |
data = [] | |
for dataset in datasets: | |
annfile = '%s/%s/annotations/instances_%s.json' % (source_dir, name, dataset) | |
coco = COCO(annfile) | |
cats = coco.loadCats(coco.getCatIds()) | |
base_classes = {cat['id']: cat['name'] for cat in cats} | |
img_id_set = set() | |
for cat_ids in base_classes.iterkeys(): | |
img_ids = coco.getImgIds(catIds=cat_ids) | |
img_id_set = img_id_set.union(set(img_ids)) | |
image_ids = list(img_id_set) | |
for image_id in image_ids: | |
annIds = coco.getAnnIds(imgIds=image_id) | |
anns = coco.loadAnns(annIds) | |
img = coco.loadImgs(image_id)[0] | |
w = img['width'] | |
h = img['height'] | |
for ann in anns: | |
b = ann['bbox'] | |
bb = convert_coco_bbox((w, h), b) | |
data.append(bb[2:]) | |
return np.array(data) | |
if __name__ == "__main__": | |
# examples | |
# k, pascal, coco | |
# 1, 0.30933335617, 0.252004954777 | |
# 2, 0.45787906725, 0.365835079771 | |
# 3, 0.53198291772, 0.453180358467 | |
# 4, 0.57562962803, 0.500282182136 | |
# 5, 0.58694643198, 0.522010174068 | |
# 6, 0.61789602056, 0.549904351137 | |
# 7, 0.63443906479, 0.569485509501 | |
# 8, 0.65114747974, 0.585718648162 | |
# 9, 0.66393113546, 0.601564171461 | |
# k-means picking the first k points as centroids | |
img_size = 416 | |
k = 5 | |
# change this line to match your system. | |
source_dir = "/media/RED6/DATA" | |
random_data = np.random.random((1000, 2)) | |
centroids = np.random.random((k, 2)) | |
random_anchors = kmeans_iou(k, centroids, random_data) | |
subsets = (('2007', 'train'), ('2007', 'val'), ('2012', 'train'), ('2012', 'val')) | |
pascal_data = load_pascal_dataset(subsets) | |
centroids = pascal_data[np.random.choice(np.arange(len(pascal_data)), k, replace=False)] | |
# centroids = pascal_data[:k] | |
pascal_anchors = kmeans_iou(k, centroids, pascal_data, feature_size=img_size / 32) | |
subsets = ('train2014', 'val2014') | |
# subsets = ('test2014', 'test2015') | |
coco_data = load_coco_dataset(subsets) | |
centroids = coco_data[np.random.choice(np.arange(len(coco_data)), k, replace=False)] | |
# centroids = coco_data[:k] | |
coco_anchors = kmeans_iou(k, centroids, coco_data, feature_size=img_size / 32) | |
print 'done' |
The problem with k-means clustering and IoU is that if you run the algorithm till convergence, it will always put out something like 0.587. So I think to get the promised 0.61 as described in the paper, it is necessary to restart the algorithm as soon as the values start to drop. I ran k-means for 10 min and got as result something like 0.602. So just increase the number of iterations here.
However, there are also other problems like how the authors of the paper implemented their IoU. For example R-CNN https://github.com/rbgirshick/rcnn/blob/master/utils/boxoverlap.m, adds +1 to calculate the width/height. This might not make a big difference, but if there are lots of small things, maybe they will add up and explain why nobody gets 0.61.
Should we use absolutes height and width (from Pascal XML) or relative ones (Darkent format)?
@Kapilkoundinya did you figure it out?