Created
May 27, 2018 19:50
-
-
Save Winand/97ec77f05cc57a07a2bc5dcd8c43ff84 to your computer and use it in GitHub Desktop.
cv2 image matching test
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Редактор Spyder | |
Это временный скриптовый файл. | |
""" | |
#import numpy as np | |
#import cv2 as cv | |
#filename = r"F:\Captura3.PNG" | |
#img = cv.imread(filename) | |
#gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) | |
#gray = np.float32(gray) | |
#dst = cv.cornerHarris(gray,2,3,0.04) | |
##result is dilated for marking the corners, not important | |
#dst = cv.dilate(dst,None) | |
## Threshold for an optimal value, it may vary depending on the image. | |
#img[dst>0.01*dst.max()]=[0,0,255] | |
#cv.imshow('dst',img) | |
#if cv.waitKey(0) & 0xff == 27: | |
# cv.destroyAllWindows() | |
#import numpy as np | |
#import cv2 | |
#from matplotlib import pyplot as plt | |
# | |
#img1 = cv2.imread(r"F:\Captura3.PNG", 0) # queryImage | |
#img2 = cv2.imread(r"F:\Captura2.PNG", 0) # trainImage | |
# | |
## Initiate SIFT detector | |
#orb = cv2.xfeatures2d.SIFT_create() | |
# | |
## find the keypoints and descriptors with SIFT | |
#kp1, des1 = orb.detectAndCompute(img1, None) | |
#kp2, des2 = orb.detectAndCompute(img2, None) | |
## create BFMatcher object | |
#bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) | |
# | |
## Match descriptors. | |
#matches = bf.match(des1, des2) | |
# | |
## Sort them in the order of their distance. | |
#matches = sorted(matches, key=lambda x: x.distance) | |
# | |
## Draw first 10 matches. | |
#img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:10], None, flags=2) | |
#print(len(img3), len(img3[0])) | |
#plt.imshow(img3),plt.show() | |
## FLANN parameters | |
#FLANN_INDEX_KDTREE = 1 | |
#index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) | |
#search_params = dict(checks=50) # or pass empty dictionary | |
#flann = cv2.FlannBasedMatcher(index_params,search_params) | |
#matches = flann.knnMatch(des1,des2,k=2) | |
## Need to draw only good matches, so create a mask | |
#matchesMask = [[0,0] for i in range(len(matches))] | |
## ratio test as per Lowe's paper | |
#for i,(m,n) in enumerate(matches): | |
# if m.distance < 0.7*n.distance: | |
# matchesMask[i]=[1,0] | |
#draw_params = dict(matchColor = (0,255,0), | |
# singlePointColor = (255,0,0), | |
# matchesMask = matchesMask, | |
# flags = 0) | |
#img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,matches,None,**draw_params) | |
#plt.imshow(img3,),plt.show() | |
import cv2 as cv | |
import numpy as np | |
from matplotlib import pyplot as plt | |
#img_rgb = cv.imread('mario.png') | |
img_bgr = cv.imread(r"F:\Captura3.PNG") | |
img_rgb = cv.cvtColor(img_bgr, cv.COLOR_BGR2RGB) | |
img_gray = cv.cvtColor(img_bgr, cv.COLOR_BGR2GRAY) | |
#template = cv.imread('mario_coin.png',0) | |
template = cv.imread(r"F:\head.PNG", 0) | |
w, h = template.shape[::-1] | |
res = cv.matchTemplate(img_gray,template,cv.TM_CCOEFF_NORMED) | |
threshold = 0.9 | |
loc = np.where( res >= threshold) | |
for pt in zip(*loc[::-1]): | |
cv.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2) | |
plt.imshow(img_rgb,),plt.show() | |
#cv.imshow('window',img_rgb) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment