Created
January 10, 2020 20:02
-
-
Save WittmannF/736857c6a953258373a3aab501a6f7a9 to your computer and use it in GitHub Desktop.
BI-wp-familia.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "BI-wp-familia.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/WittmannF/736857c6a953258373a3aab501a6f7a9/bi-wp-familia.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "nsypOT_6o1-S", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"# Análise de Dados das Mensagens de Bom Dia do WhatsApp da Família\n", | |
"Como um bom cientista de dados decidi entreter o grupo de minha família com informações sobre a movimentação no grupo. Em especial, decidi focar nos bom dias, ação praticamente religiosa tomada diariamente por muitos dos membros. Neste post estarei descrevendo passo a passo como estarei fazendo esta análise e pode servir como tutorial para quem quiser replicar para o grupo de sua família. Aliás estou escrevendo este post em paralelo à realização da análise, portanto, ainda não sei quais serão os resultados. E para deixar claro: minha intenção aqui não é desincentivar tal pratica. Afinal, a mesma é um sinal de um laço presente e contiamente reforçado entre os familiares. Por hora, meu plano de ação é:\n", | |
"- Baixar o log de dados de conversa do grupo\n", | |
"- Usando Python, extrair a partir do log de conversas e criar uma base de dados com as seguintes colunas: Data, Hora, Quem deu bom dia\n", | |
"\n", | |
"A partir dessa base de dados quero extrair algumas informações, talvez usando pivots do google sheets ou o pacote pandas do Python, como por exemplo:\n", | |
"- Número total de bom dias\n", | |
"- Média do horário que os bom dias são dados\n", | |
"- Os madrugadores da família (quem dá bom dia mais cedo em média)\n", | |
"- Os tardões da família (quem dá bom dia mais tarde em média)\n", | |
"- Os top 10 bom dias mais cedos já dados no grupo\n", | |
"- Os top 10 bom dias mais tardes já dados\n", | |
"- Quem deu mais bom dias no grupo\n", | |
"- **ATUALIZAÇÃO:** Anonimizei os contatos para evitar encrencas com os familiares por tornar público os dorminhocos 😅\n", | |
"\n", | |
"E por aí vai. Por simplificação, estarei frequentemente me referindo à sigla BD para bom dia. Sem mais delongas, vamos começar.\n", | |
"\n", | |
"## Baixando o log de conversas do grupo\n", | |
"Esta parte é bem simples, basta ir no menu do grupo > mais > exportar chat. A base de dados (juntamente com outros arquivos) estará salva em um arquivo .txt.\n", | |
"\n", | |
"Em seguida salvei o log em uma pasta do Google Drive pela qual estarei acessando aqui. Primeiramente vou montar o Google Drive:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "0PChTVT2rJ-y", | |
"colab_type": "code", | |
"outputId": "fd605cf0-8252-446f-e082-e73772e56689", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 104 | |
} | |
}, | |
"source": [ | |
"# Montar o Google Drive\n", | |
"!pip install easycolab\n", | |
"import easycolab as ec\n", | |
"ec.mount()" | |
], | |
"execution_count": 153, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Requirement already satisfied: easycolab in /usr/local/lib/python3.6/dist-packages (0.1b29)\n", | |
"Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount(\"/content/gdrive\", force_remount=True).\n", | |
"Opening directory /content/gdrive/My Drive/\n", | |
"Done!\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "gh6e0Az0Hw2m", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Agora vou acessar a pasta que salvei as mensagens e dar uma olhada no arquivo:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "cogJzi6FHdNj", | |
"colab_type": "code", | |
"outputId": "189f735d-d643-456a-a134-93efe8d63b19", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"cd familia-grupo-whatsapp" | |
], | |
"execution_count": 154, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"/content/gdrive/My Drive/familia-grupo-whatsapp\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "KmS7U2OEUrAg", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"FILENAME = 'WhatsApp Chat with Família Wittmann & CIA.txt'\n", | |
"with open(FILENAME) as f:\n", | |
" txt = ''.join(f.readlines())" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "A7mDeM3J9B1v", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Vamos dar uma olhada nos últimos 200 caracteres do arquivo (anonimizei os nomes):" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ZZ7rE1cJ7nE9", | |
"colab_type": "code", | |
"outputId": "b7aedd3e-8ef9-467e-a3b1-048bc9aa01d0", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 118 | |
} | |
}, | |
"source": [ | |
"import re\n", | |
"print(re.sub(\"- (.*):\", \"xxxx\", txt[-200:]))" | |
], | |
"execution_count": 156, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"xxxx Bom dia\n", | |
"10/27/19, 8:50 AM xxxx Bom dia feliz domingo\n", | |
"10/27/19, 8:52 AM xxxx Bom dia\n", | |
"10/27/19, 10:25 AM xxxx Bom dia\n", | |
"10/27/19, 10:28 AM xxxx Bom dia\n", | |
"\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "TY1Z3XEQ9Glq", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Agora vamos extrair todos os bom dias utilizando regex:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ARjUW_8IUrv6", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"import re\n", | |
"PATTERN = '(.*), (.*) - (.*): [bB]om dia'\n", | |
"\n", | |
"db = re.findall(PATTERN, txt)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "KQZVLbqa9NYC", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Uma lista de tuplas contendo data, horário e contato de quem deu bom dia foi criado. O padrão regex para extração destas informações foi criado utilizando o [regexr.com](https://regexr.com/). De forma a fazer algumas análises, vamos converter esta lista para um DataFrame do Pandas. " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "PosnSygN9qxv", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"import pandas as pd\n", | |
"\n", | |
"df = pd.DataFrame(db, columns=['Data', 'Hora', 'Deu BD'])" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "ggbfVC8h9xWj", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Em seguida, vou criar baixar um gerador aleatório de nomes para anonimizar os contatos:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "i_4DjfPu9NQ1", | |
"colab_type": "code", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 50 | |
}, | |
"outputId": "69b241d6-0e62-41bc-85e1-8b87e1dd3550" | |
}, | |
"source": [ | |
"!pip install names\n", | |
"import names\n", | |
"nome_aleatorio=names.get_full_name()\n", | |
"print(f\"Gerando nome aleatório: {nome_aleatorio}\")" | |
], | |
"execution_count": 159, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Requirement already satisfied: names in /usr/local/lib/python3.6/dist-packages (0.3.0)\n", | |
"Gerando nome aleatório: Paul Smith\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "q2mdOOtF9Sdg", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"contatos = df['Deu BD'].unique()\n", | |
"\n", | |
"contatos_anonimizados = {}\n", | |
"for c in contatos:\n", | |
" contatos_anonimizados[c]=names.get_full_name()" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "q4woqyIz-dpQ", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Por exemplo, vamos ver para qual nome o meu pai foi anonimizado:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "slmVoTxZ-hW5", | |
"colab_type": "code", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
}, | |
"outputId": "0a519c2c-0ee3-4b07-bb9d-ff5992b3a0ee" | |
}, | |
"source": [ | |
"contatos_anonimizados['Pai']" | |
], | |
"execution_count": 161, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"'Charles Hudkins'" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 161 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "p3egS1Eg2Ofb", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Infelizmente, o gênero do nome acabará não sendo preservado. É o melhor que temos para o momento. Por fim, vou aplicar a função aos contatos:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "yn9rviNvVDD8", | |
"colab_type": "code", | |
"outputId": "355745cb-325a-48f9-cbc3-4d4fbb2535c9", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 195 | |
} | |
}, | |
"source": [ | |
"df['Deu BD'] = df['Deu BD'].apply(lambda x: contatos_anonimizados[x])\n", | |
"df.head()" | |
], | |
"execution_count": 162, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Data</th>\n", | |
" <th>Hora</th>\n", | |
" <th>Deu BD</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>6:38 AM</td>\n", | |
" <td>Jon Sloan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>6:48 AM</td>\n", | |
" <td>Everett Brooks</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>6:51 AM</td>\n", | |
" <td>Ana Gerald</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>7:01 AM</td>\n", | |
" <td>Angela Frink</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>7:05 AM</td>\n", | |
" <td>Alice Duvall</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Data Hora Deu BD\n", | |
"0 9/1/16 6:38 AM Jon Sloan\n", | |
"1 9/1/16 6:48 AM Everett Brooks\n", | |
"2 9/1/16 6:51 AM Ana Gerald\n", | |
"3 9/1/16 7:01 AM Angela Frink\n", | |
"4 9/1/16 7:05 AM Alice Duvall" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 162 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "QtLcSK6x9pXx", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Vamos agora para algumas análises, primeiramente algumas estatísticas iniciais:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "W8cEtf3uY_Rm", | |
"colab_type": "code", | |
"outputId": "cd6ae9b1-e4d3-4aad-da53-620539ca60bf", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 166 | |
} | |
}, | |
"source": [ | |
"df.describe()" | |
], | |
"execution_count": 163, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Data</th>\n", | |
" <th>Hora</th>\n", | |
" <th>Deu BD</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>10350</td>\n", | |
" <td>10350</td>\n", | |
" <td>10350</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>unique</th>\n", | |
" <td>1129</td>\n", | |
" <td>538</td>\n", | |
" <td>66</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>top</th>\n", | |
" <td>5/7/17</td>\n", | |
" <td>6:55 AM</td>\n", | |
" <td>Mildred Johnson</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>freq</th>\n", | |
" <td>18</td>\n", | |
" <td>89</td>\n", | |
" <td>993</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Data Hora Deu BD\n", | |
"count 10350 10350 10350\n", | |
"unique 1129 538 66\n", | |
"top 5/7/17 6:55 AM Mildred Johnson\n", | |
"freq 18 89 993" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 163 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "vilH8IEv9tnK", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"O número de bom dias dados foi 10mil. Nesta base estão contidos os últimos 3 anos (mais precisamente 1129 dias, como podemos conferir no elemento **unique** da coluna **Data**). O número de pessoas que deram BDs é 66. Vamos agora ver quem deu mais bom dia na família:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "4J0TS0MqZ9sq", | |
"colab_type": "code", | |
"outputId": "c29ebf9f-6a0c-4b04-ca03-50debda7eacd", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 202 | |
} | |
}, | |
"source": [ | |
"df['Deu BD'].value_counts().head(10)" | |
], | |
"execution_count": 164, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"Mildred Johnson 993\n", | |
"Mildred Cosgrove 912\n", | |
"Ana Gerald 891\n", | |
"Everett Brooks 856\n", | |
"Charles Hudkins 770\n", | |
"Grady Kolling 695\n", | |
"Jason Dyer 526\n", | |
"Angela Frink 525\n", | |
"Carol Patrick 440\n", | |
"Geoffrey Smith 362\n", | |
"Name: Deu BD, dtype: int64" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 164 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "kp5t4MvEEPyM", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Tio Johnson é o campeão com 993 BDs. Em segundo lugar vem o primo Cosgrove com 912 BDs. Vamos plotar em um gráfico estes resultados:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "BmUknw7W4g4f", | |
"colab_type": "code", | |
"outputId": "8097b6b5-d80c-40a4-a80c-d32326c7bab9", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 359 | |
} | |
}, | |
"source": [ | |
"df['Deu BD'].value_counts()[:10].plot.bar()" | |
], | |
"execution_count": 165, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fb7d72e8ba8>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 165 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAFFCAYAAAAAUD2RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de9ztY53/8dcbOZaQneTQNpKmDKWt\ndJh+UzqQoimRjCSlZjooHegwHTQTlUbSTKUwGB1UKkmEyDBD9kYOqbHTASN2ymFSCe/fH9e17LVv\n696bfd/rWqv1fT8fj/txr+93rfu+Pnvf9/1Z3+91+FyyTUREdMMKow4gIiLaSdKPiOiQJP2IiA5J\n0o+I6JAk/YiIDllp1AEszbrrruu5c+eOOoyIiD8rCxYs+LXtOYOeG+ukP3fuXObPnz/qMCIi/qxI\n+sV0z6V7JyKiQ5L0IyI6JEk/IqJDkvQjIjpkmUlf0tGSbpJ0Rd+5dSSdIenq+nntel6SPilpoaTL\nJG3d9zV71ddfLWmv4fxzIiJiae7Plf6/A9tPOXcgcJbtzYCz6jHADsBm9WNf4NNQ3iSA9wNPAZ4M\nvL/3RhEREe0sM+nbPhf4zZTTOwPH1sfHAi/uO3+ciwuAtSStDzwfOMP2b2z/FjiD+76RRETEkC1v\nn/56tm+oj38FrFcfbwBc2/e66+q56c7fh6R9Jc2XNH/RokXLGV5ERAwy44Fcl4L8s1aU3/aRtufZ\nnjdnzsAFZRERsZyWd0XujZLWt31D7b65qZ6/Htio73Ub1nPXA38z5fw5y9n2EuYe+O0Zff3PD9lx\nNsKIiPizsLxX+icDvRk4ewHf7Dv/yjqLZ1vg1toNdDrwPElr1wHc59VzERHR0DKv9CV9kXKVvq6k\n6yizcA4BTpS0D/ALYNf68lOBFwALgTuAvQFs/0bSh4CL6usOsj11cDgiIoZsmUnf9u7TPLXdgNca\neMM03+do4OgHFF1ERMyqrMiNiOiQJP2IiA5J0o+I6JAk/YiIDknSj4jokCT9iIgOSdKPiOiQJP2I\niA5J0o+I6JAk/YiIDknSj4jokCT9iIgOWd56+tFnpjX9IXX9I6KNXOlHRHRIkn5ERIck6UdEdEiS\nfkREh2Qgd4Jkk/iIWJZc6UdEdEiSfkREhyTpR0R0SJJ+RESHJOlHRHRIkn5ERIdkymbMqtQhihhv\nudKPiOiQJP2IiA5J0o+I6JAk/YiIDknSj4jokCT9iIgOSdKPiOiQJP2IiA6ZUdKX9FZJV0q6QtIX\nJa0qaRNJF0paKOnLklaur12lHi+sz8+djX9ARETcf8ud9CVtALwZmGd7C2BF4OXAR4DDbD8a+C2w\nT/2SfYDf1vOH1ddFRERDM+3eWQlYTdJKwOrADcCzga/W548FXlwf71yPqc9vJ0kzbD8iIh6A5U76\ntq8HDgV+SUn2twILgFts31Vfdh2wQX28AXBt/dq76usfNvX7StpX0nxJ8xctWrS84UVExAAz6d5Z\nm3L1vgnwSGANYPuZBmT7SNvzbM+bM2fOTL9dRET0mUn3znOAn9leZPtPwEnA04G1ancPwIbA9fXx\n9cBGAPX5hwI3z6D9iIh4gGaS9H8JbCtp9do3vx3wI+BsYJf6mr2Ab9bHJ9dj6vPfs+0ZtB8REQ/Q\nTPr0L6QMyF4MXF6/15HAAcD+khZS+uyPql9yFPCwen5/4MAZxB0REcthRpuo2H4/8P4pp68Bnjzg\ntX8AXjaT9iIiYmayc1ZMpJnu4JXdu2JSpQxDRESHJOlHRHRIkn5ERIck6UdEdEiSfkREhyTpR0R0\nSJJ+RESHJOlHRHRIkn5ERIck6UdEdEiSfkREhyTpR0R0SJJ+RESHJOlHRHRIkn5ERIeknn7EkMy0\npj+krn/MvlzpR0R0SJJ+RESHJOlHRHRIkn5ERIck6UdEdEiSfkREhyTpR0R0SJJ+RESHJOlHRHRI\nkn5ERIck6UdEdEiSfkREhyTpR0R0SJJ+RESHJOlHRHRIkn5ERIfMKOlLWkvSVyX9WNJVkp4qaR1J\nZ0i6un5eu75Wkj4paaGkyyRtPTv/hIiIuL9meqV/OHCa7ccCWwFXAQcCZ9neDDirHgPsAGxWP/YF\nPj3DtiMi4gFa7qQv6aHAM4GjAGzfafsWYGfg2PqyY4EX18c7A8e5uABYS9L6yx15REQ8YDO50t8E\nWAQcI+kSSZ+XtAawnu0b6mt+BaxXH28AXNv39dfVc0uQtK+k+ZLmL1q0aAbhRUTEVDNJ+isBWwOf\ntv1E4Hcs7soBwLYBP5BvavtI2/Nsz5szZ84MwouIiKlmkvSvA66zfWE9/irlTeDGXrdN/XxTff56\nYKO+r9+wnouIiEaWO+nb/hVwraTN66ntgB8BJwN71XN7Ad+sj08GXlln8WwL3NrXDRQREQ2sNMOv\nfxNwgqSVgWuAvSlvJCdK2gf4BbBrfe2pwAuAhcAd9bUREdHQjJK+7UuBeQOe2m7Aaw28YSbtRUTE\nzGRFbkREhyTpR0R0SJJ+RESHJOlHRHRIkn5ERIck6UdEdEiSfkREhyTpR0R0SJJ+RESHzLQMQ0SM\nubkHfntGX//zQ3YceQyzFUfkSj8iolOS9CMiOiRJPyKiQ5L0IyI6JEk/IqJDkvQjIjokST8iokOS\n9CMiOiRJPyKiQ5L0IyI6JEk/IqJDkvQjIjokST8iokOS9CMiOiRJPyKiQ5L0IyI6JEk/IqJDsnNW\nRHTGOOwiNmq50o+I6JAk/YiIDknSj4jokCT9iIgOmXHSl7SipEsknVKPN5F0oaSFkr4saeV6fpV6\nvLA+P3embUdExAMzG1f6+wFX9R1/BDjM9qOB3wL71PP7AL+t5w+rr4uIiIZmlPQlbQjsCHy+Hgt4\nNvDV+pJjgRfXxzvXY+rz29XXR0REIzO90v8E8E7gnnr8MOAW23fV4+uADerjDYBrAerzt9bXL0HS\nvpLmS5q/aNGiGYYXERH9ljvpS3ohcJPtBbMYD7aPtD3P9rw5c+bM5reOiOi8mazIfTqwk6QXAKsC\nawKHA2tJWqlezW8IXF9ffz2wEXCdpJWAhwI3z6D9iIh4gJb7St/2u2xvaHsu8HLge7b3AM4Gdqkv\n2wv4Zn18cj2mPv89217e9iMi4oEbxjz9A4D9JS2k9NkfVc8fBTysnt8fOHAIbUdExFLMSsE12+cA\n59TH1wBPHvCaPwAvm432IiJi+WRFbkREhyTpR0R0SOrpR0Q0NNOa/jCzuv650o+I6JAk/YiIDknS\nj4jokCT9iIgOSdKPiOiQJP2IiA5J0o+I6JAk/YiIDknSj4jokCT9iIgOSdKPiOiQJP2IiA5J0o+I\n6JAk/YiIDknSj4jokCT9iIgOSdKPiOiQJP2IiA5J0o+I6JAk/YiIDknSj4jokCT9iIgOSdKPiOiQ\nJP2IiA5J0o+I6JAk/YiIDknSj4jokCT9iIgOSdKPiOiQJP2IiA5Z7qQvaSNJZ0v6kaQrJe1Xz68j\n6QxJV9fPa9fzkvRJSQslXSZp69n6R0RExP0zkyv9u4C32X4csC3wBkmPAw4EzrK9GXBWPQbYAdis\nfuwLfHoGbUdExHJY7qRv+wbbF9fHtwNXARsAOwPH1pcdC7y4Pt4ZOM7FBcBaktZf7sgjIuIBm5U+\nfUlzgScCFwLr2b6hPvUrYL36eAPg2r4vu66em/q99pU0X9L8RYsWzUZ4ERFRzTjpS3ow8DXgLbZv\n63/OtgE/kO9n+0jb82zPmzNnzkzDi4iIPjNK+pIeREn4J9g+qZ6+sddtUz/fVM9fD2zU9+Ub1nMR\nEdHITGbvCDgKuMr2v/Q9dTKwV328F/DNvvOvrLN4tgVu7esGioiIBlaawdc+HdgTuFzSpfXcu4FD\ngBMl7QP8Ati1Pncq8AJgIXAHsPcM2o6IiOWw3Enf9nmApnl6uwGvN/CG5W0vIiJmLityIyI6JEk/\nIqJDkvQjIjokST8iokOS9CMiOiRJPyKiQ5L0IyI6JEk/IqJDkvQjIjokST8iokOS9CMiOiRJPyKi\nQ5L0IyI6JEk/IqJDkvQjIjokST8iokOS9CMiOiRJPyKiQ5L0IyI6JEk/IqJDkvQjIjokST8iokOS\n9CMiOiRJPyKiQ5L0IyI6JEk/IqJDkvQjIjokST8iokOS9CMiOiRJPyKiQ5L0IyI6JEk/IqJDkvQj\nIjqkedKXtL2kn0haKOnA1u1HRHRZ06QvaUXgX4EdgMcBu0t6XMsYIiK6rPWV/pOBhbavsX0n8CVg\n58YxRER0lmy3a0zaBdje9mvq8Z7AU2y/se81+wL71sPNgZ/MsNl1gV/P8HvMhnGIYxxigPGIIzEs\nNg5xjEMMMB5xzEYMj7I9Z9ATK83wG88620cCR87W95M03/a82fp+f85xjEMM4xJHYhivOMYhhnGJ\nY9gxtO7euR7YqO94w3ouIiIaaJ30LwI2k7SJpJWBlwMnN44hIqKzmnbv2L5L0huB04EVgaNtXznk\nZmetq2iGxiGOcYgBxiOOxLDYOMQxDjHAeMQx1BiaDuRGRMRoZUVuRESHJOlHRHRIkn5ER0haUdKh\no44DQNKTBpx74QjiWGXAuXVax9HSxCV9SU+XdIak/5F0jaSfSbpmBHFI0t9Jel893ljSk1vHMQ4k\n7Sdpzfp/cpSkiyU9r4MxvGTAx3aSHt6ifdt3A89o0db98DlJW/QOJO0O/OMI4jhJ0oP64lgfOKNl\nAJJWkfQKSe+W9L7ex7DaG7vFWbPgKOCtwALg7hHG8W/APcCzgYOA24GvAdsMu2FJtwPTjtDbXnPY\nMUzxatuHS3o+sDawJ3A88N2OxbAP8FTg7Hr8N5Tf000kHWT7+AYxXCLpZOArwO96J22f1KDtfrsA\nX5X0CuCvgVcCTd+Eq28AJ9ZqARtRppC/vXEM3wRupfwu/HHYjU1i0r/V9ndGHQSlvMTWki4BsP3b\nujZh6Gw/BEDSh4AbKMlNwB7A+i1imEL18wuA421fKUlL+4IJjWEl4C9t3wggaT3gOOApwLmUn9Ow\nrQrcTLkY6THQNOnbvkbSyylJ95fA82z/vmUMNY7P1b/LbwBzgdfZ/q/GYWxoe/tWjU1i0j9b0sco\nv8T3vmvavrhxHH+qVUUNIGkO5cq/pZ1sb9V3/GlJPwSGdus4jQWSvgtsArxL0kNo/38xDjFs1Ev4\n1U313G8k/alFALb3btHOdCRdzpJ3oetQ1uxcKAnbWzaKY//+Q2Bj4FJgW0nb2v6XFnFU/yXpr2xf\n3qKxSUz6T6mf+2tXmCWvbFr4JPB14OGS/plyO/vexjH8TtIelGqmBnan75a+oX2AJwDX2L5D0sOA\n1slnHGI4R9IplK4VgJfWc2sAt7QIQNJjgE8D69neQtKWlIuDf2rRPtB8sHYaD5lyfNI054em7w1w\nJWDvOvb4R8qbkIf1BpjFWUMk6bHAdpQf4lm2r2rc/lzgcODplF+u84G32P554zgOsv2+vuMVgeNs\n79E4jg2AR9F3sWP73Ibti5Lon15PnQ98zQ3/CCV9H3gH8FnbT6znrrC9xdK/ciixrAisx5I/j1+2\njmNUJD1qac/b/sUw2p24K31JDwXeDzyznvo+cJDtWxvH8UngS7b/tWW7/WpyH4f9CjaS9C7bB9cp\ncicCl7QMQNJHgN2AH7F4gN+UvvQmanL/av0YldVt/2DKcMZdrYOQ9CbK3+mNLO5mM9Cke6cvjjOA\nl9m+pR6vTfm7ff6w2+4ldUnH295zSlzHUyYbzLqJS/rA0cAVwK71eE/gGOAljeNYALxX0uaUbp4v\n2Z7fomFJR7D02TtvbhFHn1cDJ0h6F/As4Du2D2scw4uBzW0PfXbEdCS9BPgI8HDK3V/vNr7lbKpf\nS9qUxWNNu1AG+1vbj/LzuHkEbfeb00v4cO+EiyZTaPs8vv+g3gHdZx3DbJnEpL+p7Zf2HX9Q0qWt\ng7B9LHBsXejxUuAjkja2vVmD5pu8uSyLpK37Dg8HPkvp0vi+pK0bD65fAzyIBlPiluKjwItad/NN\n8QZKQa/HSroe+BllVldr11KmKY7a3fXv8pdwb5dLk+62ehH0bmA1Sbf1TgN3MsSia5OY9H8v6Rm2\nz4OyWAtoPhWsz6OBx1L6kpv8sdc3nHHw8SnHv6Xsjfxx2g+u3wFcKukslpzV1fKu58YRJ3yAX9h+\nTh08XsH27SOK4xrKIPa3WfLn0XLWDMB7gPPqWIcoawb2XfqXzA7bBwMHSzrY9rtatAkTOJAr6QnA\nscBDKT/E3wCvsv3DxnF8FPhb4KfAl4Gv999GNophDnAAJdGu2jtvu/VMppGTtNeg8y3fICUdDjyC\nMie8P9E1myNfZ4h8jVLWfGRvQJLeP+i87Q+OIJZ1gW3r4QW2m2yXKOmxtn885Y74XsO6E564pN8j\naU0A27ct67VDav91lJkZI9tvs85L/zJlheHrgb2ARbYPaBzHWAyuj5qkYwactu1XN4zhIZTNi/am\nlGE5mjLeNJK/k1EZVcKdEsORtveVdPaApz2si7OJS/qS9qMM3N4OfA7YGjjQdsvl9r1YdqIv0dn+\nVuP2F9h+kqTLenN+JV1ke+ilIKbE8TXK4HrvqnpPYCvbQx9cl3Si7V0HLAoCaLYYaBxJ+n/AF4C1\nKDOKPmR74ZDb/ITtt0j6FoN/HjsNs/2+OEaScMfBJCb9H9reqtZYeT1lQdTxtge+ow8xjoOBJwMn\n1FO7AxfZfnfDGC6wva2k0ymLxf4X+KrtTVvFUOO41PYTlnVuSG2vb/uG6eZED2su9JQY3mn7o9PN\nqmo5rlBnhuxIudKfSyn9cAKlL/vDth8z5PafZHtBfcO5D9vfH2b7U2JZAXiq7fNbtTlNHL2fyVyW\nXLMwlPGNSRzI7a+xctyIaqxA+SE+wfY9AJKOpcxNb5b0gX+qXStvA44A1qQUo2ttZIPrtnvTER/n\nKTWZJL0e+EyDMHp95+Mwq+pqSsG3j02pMfNVSc+c5mtmTU34KwL7tl6cNyCWeyR9CnjiKOMAvgX8\nAbicBqVBJjHpj0ONlZ61KAPJUAaWm6l/WJvZPoUyNe5ZLduf4u8p01f7B9cHDqwO0T9K+qPt70G5\n+qb8nww96fe69cZkVtWWtv9v0BOt7jhs3y3pUZJWtn1nizaX4ixJLwVOarkyeooNW3YzTmL3zgos\nrrFyS62xsoHtyxrHsTtwCOWqSpS+/QNtf7lhDD+wPTY1/Ec5uF5naJxCKUGwPWUa7e4tks50/dc9\nDfuxnwW8kfJvh3IH8inb57Rof0osxwF/SSll3F/iuemUTZUy5GtQViX/gREsmKurxc9qNe44cUkf\nxqbGyoaUX6TeoOkPbP+qVQw1jsMoC5K+zJJ/WE0rjo7L7J260vJMymrpV7e6spuu/7qnRT+2pB2B\nT1H2driYkty2pox5vdH2qcOOYUo8YzNlc9Qk/S3wH5TZVH9iyG88E5f0p6ux0upqqi+Oy23/Vcs2\nB8QwFjMTRjx7p7ehjOrnlSlvxqZ9CYSRkXQOsN/U9SoqVTaPsL3UN6ZZjGMl281r/UxH0lm2t1vW\nuSHH8DNKjazLW1yITGKf/shrrFQXS9rG9kWjCsD2KPvx+42sNIbrhjKjNN10UYZcQneKRwxaoGj7\nMpXNXFr5AeUOA0lH2H5Tw7bvJWlVYHVgXZUia73JHmsCGzQO51rgilZ3npOY9MehxgqUuv57SPoF\npWul5R84QG9npg8Dj7S9g6THUaaoHdUqhmpks3emW3zT06iraxxqyC9tH4WWeyz0z6R7+rSvGr7X\nAW8BHknp7uvFdRulG6ylXkmK79CgJMUkJv1xqLECMPTSrPfDv1MWqr2nHv8PpX+/ddJ/PXBc7duH\nUoOn1eydXv2fVSkb6/yQ8ge+JWUK5VOHHUD/WoD6Rtw/znPTsNuvNlXZG3cqAX/RKAZoVMxsWWwf\nDhwu6U22jxhxOD+rHyvXj6GaxD79kddYqXGsM+D07babbItXY7jI9jaSLvHiDTOaLIrqi2EFYBfb\nJ4549s5JwPtdt6STtAXwAdu7NIxhV+BjwDksLu71DttDr68/DoPJNY47gIWUf/+m9TGM4E64L6Yt\nuG99quNax1FjWRu4ZZhdPRN3pT8mc6GhzJDYiHJVK8qc/V9JuhF4re0FDWL4XZ2y2qudvi2Ny9nW\nBTDvBE4cRbLvs7n79iC1fYWkv2wcw3uAbXpX9yoF8c6kwaYqLVe6LkPr//OlqrOI/oaS9E8FdgDO\no2xYP+y230f5u/ixyuZC36FMN79L0itsnzmMdicu6df+4g+weMpm7wqi5S0swBmUkgen17ieR6mr\nfwzwbyzey3eY9qfMg95U0vnAHMpeva2dKent3Hfq6G+m/5JZd5mkz1OmxkGpId907QallHF/d87N\nlGl6ndGi7MUDtAuwFXCJ7b1r99t/LONrZstuwIfq470ovwtzgMdQZrol6d9PR1FKDSxg8ZTNUdjW\n9mt7B7a/K+lQ26+r7+pDZ/vielu/OeXN7yctu5f67FY/v6HvnGnbl7w3ZWXwfvX4XMoG4S2dVusg\nfbEe70a5uovR+X29G72rdj/eRLlDb+HOvm6c5wNftH03cJWkoeXmSUz6t06tsTIiN0g6APhSPd4N\nuLGWRxhqWYj6y7ue7att31Vn7awGbC3pdNs3DrP9qWxv0rK9aWL4A3BY/RhVDO9Q2TLxGfXUkZTa\n+jE68yWtRanIuwD4P+C/G7X9xzqecCOlJMjb+55bfViNTsxAbt/UvF2BFYGTWHL2TutVqOtSVqH2\n/sDPo6yGvBXY2EMsYSvpSOC/bP97PV5I6a9cHbjL9uuH1faAWB4F/M72r+uYwjOAhbabJru6AGZQ\nhcuh321I2mvQWJOkB1GKAu4+7Bj62nwMpRTF1BXrE1tK+P6SNBdYs1XJFklPoXTjzAE+YftD9fwL\ngD2H9XsxSUl/0OrTnuarUPvVq/s1Wg1kSroE2Lp36zhl9s55tp+x1G8we3H8I/AqSrL9EvAcysyV\npwA/tP2WFnHUWB7Wd7gq8DJgHdvva9D2xcBnbB/Zd24N4OvAtbb3GXYMfe3+kFJkbonuz0YTC/rj\n2Aw4mPvOmmnS5VdLcrybsp3p5cDBI55o0MzEJP1xI+kLlPnpdwMXUVb6HW77Yw3aXqIEhKQtbF9R\nH19he4thx1Db+hFlNsLqwC8pq0LvqP2Vl7aKYynxLbD9pAbtrAOcBvyH7U/WWTunUopsHTjs9qfE\n0uTffD/iOI9yJ3wY8CLqTl4t3oRr+6dR3vjOpSyee4jtV7Voe9Qmrk9/XIp7Ueq33yZpD8pg3YGU\nX7KhJ33gHkmPcC3w1pfwN6Btmek/uFSxvFPST23fUeO5S1LTkrpTVuauQFmo1eT33/ZvJD0H+I6k\nR1LqrHymLhBq7VuS/oFyl9Hf/dlyJhXAarbPkqQ6o+cDkhYATZI+sL7t3qLF0+vdWCdMXNKn7Pl5\nBaVvH0pxr2OAoRf3muJBtc/2xZTytX+S1Oq26mOUP+63UTZugVLv5FDavOn0rFUHLgWsWR9Tj5vu\nL8DilblQCq79nMW/I0PV9+8+EvgX4Czg2t55N9wYncUrod/Rd671TCoog5grAFdLeiNwPfDglgFM\nqbmzYv/xCN4Em5m47p1BK05br0Ktbb4ZOICy7H9HYGPK7f1fN2p/e0qf5eMpf9RXAoe0nNmkwRuB\n38v23q1iGaVl/D/YDTdGHxeStqHU81+LMlf9ocBHbV/QqP2fU+56B+2q13RdT73DORr4gu3fDr29\nCUz6/01Z2t5f3OtQ20OvsbIsGrOysl0gaf+lPe/Gm3aMWr37/HsWd3+eA3x2ROs3ApD0aMqYxm6U\nelDHAN8dVimGSUz6T6BMg+rfmu9VHlBWdshxjMvYQqdpyc06Xgd8tv95d2zTjroq+UEsubfB3bZf\n06j9sdhFbBzV7q4XUhYN3k1J/ofPdlfTxCX9nlEW96rtj2zjkBisf+pqV0n6oe2tlnVuiO2PReG3\ncaOymc3ewAuA04ETKGta9pztrumJGcid7jZeEpRZCj+l3DK1mr0yso1Dxo2kVTxlU5tB5xqYzCuc\nB+ZuSZva/imApL+gYbmS/qQuaTXKQsWftGp/HNU+/VsoJWQO7Pu7uLB2T8+qiUn6wNJ2SFob2A54\nNY1mbDDCjUP6qeyN+niWXABzUOMw/pu6W9Iyzk201gN203gHcLakayjdn4+iXGE2JelFlNlkKwOb\n1G7Zg1p172hw6fN7NZ698zLb10wTx6z3DExM0r8/fbOSWlZVHLRxyKsato+kz1AWRj0L+DylouAP\nGrb/CMrWc6tJeiIssSXd0GqLTImhf6vCR/f9DoyifvtulAR7kaShD9gNUufGb0YpwgelCN8odpn7\nAPBkykAyti+V1LJG0wIW7508VesprL+TdBSNdrib2D79cTHKsQVJl9nesu/zg4HvNJw2uhfljW4e\nZVVy/5Z0x7aYn15r/0zLIyj122rAbpq2XwacZvt2Se+l3G390whqU11ge9spJUIua/wmPBZUtkk8\nBniP7a3qivVL+lfVz6aJudIfF3Vs4dbeu3Qv2Uvah7LU+xMNw+l1J91RV4LeDKzfqvFaZOxYSe+0\n/dH+51pd1Y0iqS/NlAG7r7F4wO57lJIVw/aPtr8i6RmULs9DKW8+LfZ36HelpFdQFkVtBrwZ+K/G\nMQAgaSf6prDaPqVxCOu67Cz3Lrh3xfrQxlk6tYFDI3sweNed4yljCi2dolI29mOUnbx+zuJa7i29\nfMC5oe8WNW5qn/5hlLueLW2/2faFtj9O2Ry7hV4y2RH4nO1v02Bf1gHeRBlr+iPld/I2ykblTUk6\nhLLHwo/qx36SPtw4jKY73E1M9864LMJZ2vQ3TSmE1pLKxi2rtlwnIOmxlD/sj7Lksv81KQvoHt8q\nlnEg6S+mG7BrGMMplJIHz6V07fyeskF7kymb46aO8TyhN6tPpSLuJS27mWpdqCOALSjTvOdQ9pUe\nyhjkJHXv9GbvbA5sQ9kmEEoFv2aDl8AKktbzlI1KVLZha07S04C51J+1pJabPm9O6btei/Jz6Lkd\neO3Ar2ig1ljZaFh/VAPa27/v8X2eb7wqeFdge8oq9Vskrc+Sb8hNTLNI61bKitTPumx608palEWc\n0LgmVB3fWRVotsPdxFzp93Q95J0AAAuGSURBVEg6F9jR9u31+CHAt20/c+lfOWvtv5LSP/k2SpcK\nwJMoXSyfcsON2yUdD2wKXMri23rbfnOrGGocT7Xdajei6WI4B9iJ8ua3gLIt3vm2l3qHOEtt91YF\nD7wgsf13w45hQEwPZ8lpvL9s3P7hlCva/q0jb6O8Eaxpe89GcewOHAKcTUm4z6TMlf9yi/ZrDG0X\nDdqeqA/gJ8AqfcerUN45W8awA6Xsws3Ar+vjHUbwf3EV9Y19xD+Tx1AqS15Rj7cE3ts4hkvq59cA\nH6yPL2scw7mUwfze8UOAcxvHsBNwNWWD+p9RLgauHMHvxEXTnWsVDyXJb0SZ3LBT/XjECP4vDgVe\n2upvdZK6d3qOA34g6ev1+MUsLoXQhEsly3HYp/cK4BHADSOO43OULoTPAti+TGWTmX9qGMNKtStj\nV+A9y3rxkKwH9O8jcGc919KHgG2BM20/UdKzgOZ3GsCDJW3seochaWMWl1ZusteCbUs61WWc7eRl\nfsHwvA7YH7hL0h9YvIZkzWE0NnFJ3/Y/13mvvbnoe9u+ZGlfM8HWBX4k6QcsuWFG66JWq9v+wZT+\n7NbVRg+i1DQ53/ZFtfzA1Y1jGPkFCfAn2zdLWkHSCrbPltRyGnHP24DzJP2UkuQ2Af5BZRvJlv8n\nF0vaxvZFDdsEyip92+cDc9xwDGPi+vQB6hzkzWwfo7I13YNt/2zUcbU2XXErNy5qVd+E3wh8xfbW\nknYB9rG9Q8s4xoGkJ1Hm5UPp2ml6QSLpTMqbzSHAwyhjG9vYflrLOGosqwCPrYc/aZn4+mL4MWWf\n3F9QuryardRW3bpS0sW2m5UkmbikXwfN5gGb235MXZT0FduzXrjoz019M9zd9hsat/sXlF2jnkYp\nR/EzYA83XDgl6TGURUjr2d6iLpLayXbLLqZeLCMbRJW0OtDrQvg7yvTZEzyCnaKmziwDcLuZZb0Y\nBq7YbvG7KekC4DLKm/CXBsQwlAkXE9e9A/wt8ETqzBnb/1tn8DQxLusFemrNm1cAL6Mk2681bn8F\nYJ7t59Rb9xVcZ1Y1NvJxhbry8+PAIylX2BsDP6asZRh227dz3ymSvf6299VulvfYPmvYsdR4Bs4s\nY/DCxqHpJfepb8SNvBB4DvB8yoyyJiYx6d9ZB2h6q9vWaNz+yNcL1Kva3evHr4EvU+7qntWi/X62\n75H0TuBE279r3X6fcRhXGNkgqu1pL3zqgqQtKCUhtmgRD+Vu/HEecVfDgDfiR1FmvbVYOPgO2wfU\nAe1m4xiTWIbhREmfpWzK/VrgTMpVXhO2P+hS8XNDYGvbb7P9Nspc/Y0bhfFj4NnAC20/w/YRNKyZ\nPsCZkt4uaSNJ6/Q+Gsfwa0mbsnip+y60n9X0J9s3UxbwrWD7bEryGynbd7vsLHdEw2Z7M8tGrfdG\n/D+2N6HUI2qyTy/wApWrkEFlSoZm4q70bR8q6bmUhR6bA++zfcYIQhnl9LyXUH6RzpZ0GqW/cFAJ\n2VZ2q5/7xxJal699A2Vc4bGSrqd0dbWeqniLSqXTc4ETJN1EGTwcC7Y/u+xXzZpxmVk2ytlMp1HG\nuB4s6TbqIDIMd8rmRA3k1tvUM0fRjTEglvdQ5oT3T8870XazYk61a2tnSjfPsyn9pV+3/d1WMYyb\nUY4r1LZ/T7nD3oOy5P+EevXfKWM0s6w3m+lgyhtR89lMkr5pe+dm7U1S0geQdBbwEo/BBuS1kFJv\nvUDz6XlTYlmbMpi7m+3tGre9OmXxyca291XdxMMNStiOy8D6OF2QjKMRziwbizfiWptrm3p4oe1F\nw2pr4rp3gP8DLpd0Bn23zsOa/rQMqwO39dYLSNpkVOsFXLbnO7J+tHYMZXZC7+rpeuArQIu65c1m\nbi2N7bsl3SPpoeNwQTIORjmzTNKjKdN3z6+n7qHs/fAMSgG2ZklfZWObQym7iAk4QtI7bA+l/Pgk\nJv2T6sdI9a8XoCS9BwH/AXRxvcCmtnerxa2wfYc0oNzkENj+YL3KfrPtw1q0uRTjdEEyEmM0s+wT\nwLsGnL+1PveiAc8Ny3spXUo3AdQFpWcypD0nJi7pt5z6tAwjXS8wZu6UtBqLZ85sSt/g3bDVq+zd\nKRuYjNJYXJCM2I+B/6TMLFsIIOmtI4hjPduXTz1p+3JJcxvHskIv4Vc3M8SZlROT9LXkBtj30WJZ\n9RSjXi8wTj5AmamwkaQTKHc7r2ocw/mSPkW5suy/ym62N+wYXZCM0rjMLFtrKc+t1iyK4jRJp7Nk\nmemhFWycmIHcvuXUvYGg4+vnv6NMfzqwcTxvBzaj7FB0MGWrxC/UOfOdo7Id3LaUP/ALbP+6cftn\nDzht289u0PbOwIa2/7UeX0ipJQ/wzmH13Y6zUc8sk/RF4Hu2Pzfl/GuA59rebfBXDi2el7C4JtN/\n2v760l4/o7YmJen3aMCGBK0LGvW1+1zgeZREd/qI1guMnMouSV8ATh7xqtyRkHQ+8HLb19bjSymL\ngNYAjmk9m2rcjGJmWZ0t83XK+pleCYR5lP2C/9b2r1rE0RfPoyhFIs+ss91WHNa04onp3ukjLS5Z\n2ivq1HTl8ZTpeZ1M9FMcSrllPUTSRZRb+lPcuKqipB0py+v7i50d1KDplXsJvzqvTgm8uePdfsBo\nZpa5bGf6tFoKo1d64tu2v9cqhp5aOWBfYB1KPaINgM9QLgxmv70JvNJ/EnA0Zb6tKCveXt2y77bG\nMTbrBcZFfTN8NmV/3O2HteJwmrY/Q5lC+yzg88AulK0K92nQ9kLbj57muZ/a3nTYMcT4qnd+T6bM\nz39iPXe5y+Yus27irvRtLwC2kvTQejyqpNv56Xn96uydF1Gu+Lem/eYhT7O9paTL6jTOj9Nud7ML\nJb12QP/x62hUhC/G2h9t39mbxSxpJZYyKWWmJibpT7fysvcf2WrlZZ9Mz6sknUi5kjkN+BTwfdv3\nNA7j9/XzHSp7LNxM2Ru1hbcC35D0CuoUXkoBvlUoJQCi274v6d3AanUc8B+Abw2rsYlJ+ozJysue\nTM9bwlGUJfajrPR5iqS1gI9REq8p3TxDV+dgP03Ss1lcsnck/ccxlg4E9gEup+yXeypD/N2cuD79\nURvD9QIjI+mdtj9aH7/M9lf6nvuw7XePKK5VgFUz3hJdNDFJv5dgJB3BgKTbqi993NYLjFL/VNmp\n02ZHMY1WY7A9X0TPMtZvHNB/kTSbJql756r6ef4og/Di7deeO2W9wAGSLqbcynWFpnk86Hi4gYzJ\n9nwRfd7JkhuorEKptLkGpV5Xkv7S2P5W/TwufekjXy8wBjzN40HHwzYW2/NF9BnJ+o2JSfqSTl7a\n826/I88+wNF16ui96wUaxzBqW2nxjkCr1cfU49abUPe252u9RWLEdNbuP7D9xr7DOQzJxCR94KnA\ntZSiRRcy2u0Bx2m9wMjYXnHUMdQSEKbM7hqH7fkiekayfmOSBnJXpBQ32x3YEvg28EXbVzaOYyx2\naopC02zL1+PG2/NF9Eh6OPANykXIfdZv1FIRs25irvTrHPDTKGVKV6Ek/3MkfdD2pxqGMlbrBYLr\nWXKHJODe7fnS1RMjM6r1GxNzpQ/3zr/ekZLw5wInA0fbvn6UccXoSDoFeNfUDTMk/RXwYdstd0iK\nGLmJudKXdBylWt6pwAdtXzGiOMZivUDca5x2SIoYuYlJ+pTFT78D9gPe3LcFqyiLolpVdByL9QJx\nr3HaISli5CaqeydiqnHbISli1JL0Z9kYrhfotHHbISli1JL0Z5mkRSxlvUCmCI7GlB2SrkyFy+iq\nJP1ZNi7rBSIiBulaLZihs3237dNs7wVsCyykrBd44zK+NCJi6CZp9s7YGLBe4JOUfuWIiJFK984s\nm7Je4EujWi8QETFIkv4sk3QPizdC7//Pbb1eICLiPpL0IyI6JAO5EREdkqQfEdEhSfoRER2SpB8R\n0SFJ+hERHfL/AbkZtz7B1IY/AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "Ceo_O--R0Cqi", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Para ficar mais fácil tirar informações referentes aos horários dos BDs, vamos adicionar uma coluna com o horário convertido para um número fracionário (por exemplo 6:30AM tornaria-se 6.5). Precisarei adicionar algumas condicionais para corretamente converter 12:30AM (meia noite e meia) para 0.5 e 12:30 PM (meio dia e meia) para 12.5:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "vMJvQkSYK3f1", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"def convert_para_frac(horario):\n", | |
" hora = int(re.findall(\"(.*):\", horario)[0])\n", | |
" minuto = float(re.findall(\":(.*) \", horario)[0])\n", | |
" minuto_frac = minuto/60\n", | |
" if \"AM\" in horario:\n", | |
" if hora==12:\n", | |
" return minuto_frac\n", | |
" else:\n", | |
" return hora+minuto_frac\n", | |
" else:\n", | |
" if hora==12:\n", | |
" return hora+minuto_frac\n", | |
" else:\n", | |
" return hora+minuto_frac+12" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "v57ae3U0O0Ok", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Vamos testar a conversão de alguns horários:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "_q9c9fiUK30a", | |
"colab_type": "code", | |
"outputId": "cca378d6-89c7-4383-b205-384c3920f970", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 84 | |
} | |
}, | |
"source": [ | |
"lista_de_horarios=['12:30 AM', '12:30 PM', '6:45 AM', '2:15 PM']\n", | |
"\n", | |
"for h in lista_de_horarios:\n", | |
" print(f'{h} foi convertido para {convert_para_frac(h)}')" | |
], | |
"execution_count": 167, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"12:30 AM foi convertido para 0.5\n", | |
"12:30 PM foi convertido para 12.5\n", | |
"6:45 AM foi convertido para 6.75\n", | |
"2:15 PM foi convertido para 14.25\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "Q3h2VYokyV_t", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Vamos agora adicionar uma nova coluna com o horário fracionado." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "pPx-5rJbaoz0", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"df['Hora Frac'] = df['Hora'].apply(convert_para_frac)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "-U8AIgOj1Gou", | |
"colab_type": "code", | |
"outputId": "50517708-621a-4480-f718-51584439467d", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 195 | |
} | |
}, | |
"source": [ | |
"df.head()" | |
], | |
"execution_count": 169, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Data</th>\n", | |
" <th>Hora</th>\n", | |
" <th>Deu BD</th>\n", | |
" <th>Hora Frac</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>6:38 AM</td>\n", | |
" <td>Jon Sloan</td>\n", | |
" <td>6.633333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>6:48 AM</td>\n", | |
" <td>Everett Brooks</td>\n", | |
" <td>6.800000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>6:51 AM</td>\n", | |
" <td>Ana Gerald</td>\n", | |
" <td>6.850000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>7:01 AM</td>\n", | |
" <td>Angela Frink</td>\n", | |
" <td>7.016667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>9/1/16</td>\n", | |
" <td>7:05 AM</td>\n", | |
" <td>Alice Duvall</td>\n", | |
" <td>7.083333</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Data Hora Deu BD Hora Frac\n", | |
"0 9/1/16 6:38 AM Jon Sloan 6.633333\n", | |
"1 9/1/16 6:48 AM Everett Brooks 6.800000\n", | |
"2 9/1/16 6:51 AM Ana Gerald 6.850000\n", | |
"3 9/1/16 7:01 AM Angela Frink 7.016667\n", | |
"4 9/1/16 7:05 AM Alice Duvall 7.083333" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 169 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "m3220vH-yeVp", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Vou também criar uma função para converter horários fracionados para normal. Será útil posteriormente:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ppczK4axykZa", | |
"colab_type": "code", | |
"outputId": "be691671-11ec-44b6-f354-88b9d9d19623", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 84 | |
} | |
}, | |
"source": [ | |
"def frac_para_normal(horario):\n", | |
" hora = int(horario)\n", | |
" minuto = int((horario-hora)*60)\n", | |
" return f'{hora}:{minuto}'\n", | |
"\n", | |
"horarios_fracionados=[0.5, 12.62, 7.76, 14.9]\n", | |
"\n", | |
"for h in horarios_fracionados:\n", | |
" print(f'{h} foi convertido para {frac_para_normal(h)}')" | |
], | |
"execution_count": 170, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"0.5 foi convertido para 0:30\n", | |
"12.62 foi convertido para 12:37\n", | |
"7.76 foi convertido para 7:45\n", | |
"14.9 foi convertido para 14:54\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "MX1JPoav5hIw", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"## Análise dos horários\n", | |
"Vamos para algumas análises utilizando os horários. Primeiramente os recordes de quem deu bom dia mais cedo e mais tarde:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "zoMw5h2G5fL-", | |
"colab_type": "code", | |
"outputId": "e9c03a31-e372-4a30-e0c2-3901030d3174", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 343 | |
} | |
}, | |
"source": [ | |
"df.sort_values('Hora Frac').head(10)" | |
], | |
"execution_count": 171, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Data</th>\n", | |
" <th>Hora</th>\n", | |
" <th>Deu BD</th>\n", | |
" <th>Hora Frac</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>177</th>\n", | |
" <td>9/18/16</td>\n", | |
" <td>1:01 AM</td>\n", | |
" <td>Devon Fogg</td>\n", | |
" <td>1.016667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1067</th>\n", | |
" <td>12/11/16</td>\n", | |
" <td>1:25 AM</td>\n", | |
" <td>Devon Fogg</td>\n", | |
" <td>1.416667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1068</th>\n", | |
" <td>12/11/16</td>\n", | |
" <td>1:29 AM</td>\n", | |
" <td>Mathew Vangieson</td>\n", | |
" <td>1.483333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4806</th>\n", | |
" <td>12/24/17</td>\n", | |
" <td>1:33 AM</td>\n", | |
" <td>Geoffrey Smith</td>\n", | |
" <td>1.550000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1069</th>\n", | |
" <td>12/11/16</td>\n", | |
" <td>1:56 AM</td>\n", | |
" <td>Linda Odom</td>\n", | |
" <td>1.933333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1673</th>\n", | |
" <td>2/10/17</td>\n", | |
" <td>1:57 AM</td>\n", | |
" <td>James Mattingly</td>\n", | |
" <td>1.950000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1070</th>\n", | |
" <td>12/11/16</td>\n", | |
" <td>1:57 AM</td>\n", | |
" <td>Carol Patrick</td>\n", | |
" <td>1.950000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9752</th>\n", | |
" <td>8/11/19</td>\n", | |
" <td>1:59 AM</td>\n", | |
" <td>Mildred Johnson</td>\n", | |
" <td>1.983333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1286</th>\n", | |
" <td>1/1/17</td>\n", | |
" <td>3:21 AM</td>\n", | |
" <td>Geoffrey Smith</td>\n", | |
" <td>3.350000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1287</th>\n", | |
" <td>1/1/17</td>\n", | |
" <td>3:22 AM</td>\n", | |
" <td>Thomas Ellis</td>\n", | |
" <td>3.366667</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Data Hora Deu BD Hora Frac\n", | |
"177 9/18/16 1:01 AM Devon Fogg 1.016667\n", | |
"1067 12/11/16 1:25 AM Devon Fogg 1.416667\n", | |
"1068 12/11/16 1:29 AM Mathew Vangieson 1.483333\n", | |
"4806 12/24/17 1:33 AM Geoffrey Smith 1.550000\n", | |
"1069 12/11/16 1:56 AM Linda Odom 1.933333\n", | |
"1673 2/10/17 1:57 AM James Mattingly 1.950000\n", | |
"1070 12/11/16 1:57 AM Carol Patrick 1.950000\n", | |
"9752 8/11/19 1:59 AM Mildred Johnson 1.983333\n", | |
"1286 1/1/17 3:21 AM Geoffrey Smith 3.350000\n", | |
"1287 1/1/17 3:22 AM Thomas Ellis 3.366667" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 171 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "VqhphVmqmK7c", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"O campeão deu bom dia 1 da manhã! E os top 10 deram bom dias antes das 3 e meia da manhã. Vamos ver agora quem deu BD mais tarde:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Qyrk1Aca6tXJ", | |
"colab_type": "code", | |
"outputId": "9e5e0b09-8990-4875-e017-c0bdbface428", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 343 | |
} | |
}, | |
"source": [ | |
"df.sort_values('Hora Frac', ascending=False).head(10)" | |
], | |
"execution_count": 172, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Data</th>\n", | |
" <th>Hora</th>\n", | |
" <th>Deu BD</th>\n", | |
" <th>Hora Frac</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>176</th>\n", | |
" <td>9/17/16</td>\n", | |
" <td>9:35 PM</td>\n", | |
" <td>Elizabeth Mcwilliams</td>\n", | |
" <td>21.583333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5939</th>\n", | |
" <td>4/29/18</td>\n", | |
" <td>9:34 PM</td>\n", | |
" <td>Ana Gerald</td>\n", | |
" <td>21.566667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4331</th>\n", | |
" <td>10/30/17</td>\n", | |
" <td>8:28 PM</td>\n", | |
" <td>Everett Brooks</td>\n", | |
" <td>20.466667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2698</th>\n", | |
" <td>5/23/17</td>\n", | |
" <td>7:34 PM</td>\n", | |
" <td>Everett Brooks</td>\n", | |
" <td>19.566667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1702</th>\n", | |
" <td>2/12/17</td>\n", | |
" <td>5:43 PM</td>\n", | |
" <td>Merrill Williams</td>\n", | |
" <td>17.716667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1186</th>\n", | |
" <td>12/23/16</td>\n", | |
" <td>5:39 PM</td>\n", | |
" <td>Jerry Bee</td>\n", | |
" <td>17.650000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1370</th>\n", | |
" <td>1/9/17</td>\n", | |
" <td>5:26 PM</td>\n", | |
" <td>Mildred Cosgrove</td>\n", | |
" <td>17.433333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>660</th>\n", | |
" <td>10/29/16</td>\n", | |
" <td>5:23 PM</td>\n", | |
" <td>Jason Dyer</td>\n", | |
" <td>17.383333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2836</th>\n", | |
" <td>6/4/17</td>\n", | |
" <td>5:00 PM</td>\n", | |
" <td>Everett Brooks</td>\n", | |
" <td>17.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2131</th>\n", | |
" <td>3/26/17</td>\n", | |
" <td>4:16 PM</td>\n", | |
" <td>Jason Dyer</td>\n", | |
" <td>16.266667</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Data Hora Deu BD Hora Frac\n", | |
"176 9/17/16 9:35 PM Elizabeth Mcwilliams 21.583333\n", | |
"5939 4/29/18 9:34 PM Ana Gerald 21.566667\n", | |
"4331 10/30/17 8:28 PM Everett Brooks 20.466667\n", | |
"2698 5/23/17 7:34 PM Everett Brooks 19.566667\n", | |
"1702 2/12/17 5:43 PM Merrill Williams 17.716667\n", | |
"1186 12/23/16 5:39 PM Jerry Bee 17.650000\n", | |
"1370 1/9/17 5:26 PM Mildred Cosgrove 17.433333\n", | |
"660 10/29/16 5:23 PM Jason Dyer 17.383333\n", | |
"2836 6/4/17 5:00 PM Everett Brooks 17.000000\n", | |
"2131 3/26/17 4:16 PM Jason Dyer 16.266667" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 172 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "eeu5ReAWAUA9", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"O campeão deu bom dia as 9 e 35 da noite! E os top 10 deram bom dias após as 4 da tarde! Antes tarde do que nunca, não é mesmo gente? Vamos agora ver a média dos BDs:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "W7N86PEkIukL", | |
"colab_type": "code", | |
"outputId": "06f2b446-2504-402f-8d6b-bb15fcde6237", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"media_bomdia=df['Hora Frac'].mean();media_bomdia" | |
], | |
"execution_count": 173, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"7.8886151368759805" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 173 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "q1w0Fchu3Zov", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"E também a distribuição dos bom dias:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "1zjABHZZn1OV", | |
"colab_type": "code", | |
"outputId": "0df3e7e4-e67a-4f68-e69d-8885081bb3d8", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 282 | |
} | |
}, | |
"source": [ | |
"df['Hora Frac'].hist(bins=100)" | |
], | |
"execution_count": 174, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fb7d72fe080>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 174 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAO30lEQVR4nO3dXYxd1XmH8ecNDmkDKQY6spDt1rRY\nU1lYoQRRKqLoELcVH1VNJEKpLGKQI/cCUlIsFTc39KYSkdoQIlVI0ziNkWhTh9BiJSgNMhylvQiK\nTREE3AqLGvDI4JACyZBGdJq3F2c5OZgZZttzPtd5fhKavdfe58ya19v/Way9z3JkJpKkurxn2B2Q\nJPWe4S5JFTLcJalChrskVchwl6QKrRh2BwBWrlyZF1xwwbC7MfLefPNNzjjjjGF3Y+RZp2asUzOj\nXKcDBw68mplTCx0biXBftWoV+/fvH3Y3Rl673abVag27GyPPOjVjnZoZ5TpFxAuLHXNaRpIqZLhL\nUoUMd0mqkOEuSRUy3CWpQoa7JFXIcJekChnuklQhw12SKjQSn1DVaFu38xs/2z581zVD7Imkpgx3\nLag70CWNH6dlJKlChrskVchwl6QKGe6SVCHDXZIq5NMyOik+FimNB0fuklQhw12SKmS4S1KFDHdJ\nqpDhLkkVMtwlqUKGuyRVyHCXpAoZ7pJUIT+hqp7wk6vSaHHkLkkVMtwlqUKNpmUi4k+BTwIJPA3c\nDJwHfAU4FzgA3JiZb0XE+4D7gA8BPwD+MDMP977rGjb/KT5pdC05co+I1cCfAJdk5oXAacANwGeB\nuzPzAuA1YFt5yTbgtdJ+dzlPkjRATadlVgC/GBErgPcDR4GPAg+U47uBa8v25rJPOb4pIqI33ZUk\nNbHktExmzkbEXwEvAv8DfIvONMzrmTlfTjsCrC7bq4GXymvnI+INOlM3r3a/b0RsB7YDTE1N0W63\nl/3D1G5ubm5gddqxcX7pkxYx7D/LQdZpnFmnZsa1TkuGe0ScTWc0fj7wOvBV4MrlfuPMnAFmAKan\np7PVai33LavXbrcZVJ1uWsZ8+uEtrd515BQMsk7jzDo1M651ajIt8zvAf2Xm9zPzf4EHgcuBlWWa\nBmANMFu2Z4G1AOX4WXRurEqSBqRJuL8IXBYR7y9z55uAZ4HHgOvKOVuBh8r23rJPOf5oZmbvuixJ\nWsqS4Z6Zj9O5MfoEnccg30NnOuUO4PaIOERnTn1Xecku4NzSfjuwsw/9liS9i0bPuWfmncCdJzQ/\nD1y6wLk/AT6+/K5Jkk6Vn1CVpAoZ7pJUIcNdkipkuEtShQx3SaqQ4S5JFTLcJalChrskVchwl6QK\nGe6SVCHDXZIqZLhLUoUMd0mqkOEuSRUy3CWpQoa7JFXIcJekChnuklQhw12SKmS4S1KFDHdJqpDh\nLkkVMtwlqUKGuyRVyHCXpAoZ7pJUIcNdkipkuEtShQx3SaqQ4S5JFTLcJalCK4bdAY2GdTu/Mewu\nSOohR+6SVCHDXZIqZLhLUoUMd0mqkOEuSRVqFO4RsTIiHoiI/4iIgxHx2xFxTkQ8EhHPla9nl3Mj\nIr4QEYci4qmIuLi/P4Ik6URNR+73AN/MzN8APggcBHYC+zJzPbCv7ANcBawv/20H7u1pjyVJS1oy\n3CPiLOAjwC6AzHwrM18HNgO7y2m7gWvL9mbgvuz4DrAyIs7rec8lSYtq8iGm84HvA38XER8EDgC3\nAasy82g552VgVdleDbzU9fojpe1oVxsRsZ3OyJ6pqSna7fYp/giTY25urm912rFxvmfvNew/y37W\nqSbWqZlxrVOTcF8BXAx8KjMfj4h7+PkUDACZmRGRJ/ONM3MGmAGYnp7OVqt1Mi+fSO12m37V6aYe\nfkL18JZWz97rVPSzTjWxTs2Ma52azLkfAY5k5uNl/wE6Yf/K8emW8vVYOT4LrO16/ZrSJkkakCXD\nPTNfBl6KiOnStAl4FtgLbC1tW4GHyvZe4BPlqZnLgDe6pm8kSQPQdOGwTwH3R8TpwPPAzXR+MeyJ\niG3AC8D15dyHgauBQ8CPy7mSpAFqFO6Z+SRwyQKHNi1wbgK3LLNfkqRlcMlf9Vz38sGH77pmiD2R\nJpfLD0hShQx3SaqQ4S5JFTLcJalChrskVchwl6QKGe6SVCHDXZIqZLhLUoUMd0mqkOEuSRUy3CWp\nQoa7JFXIcJekChnuklQh13NXX7m2uzQcjtwlqUKGuyRVyHCXpAoZ7pJUIcNdkipkuEtShQx3SaqQ\n4S5JFTLcJalChrskVchwl6QKGe6SVCHDXZIq5KqQGhhXiJQGx5G7JFXIcJekChnuklQhw12SKmS4\nS1KFDHdJqlDjcI+I0yLi3yPi62X//Ih4PCIORcQ/RsTppf19Zf9QOb6uP12XJC3mZEbutwEHu/Y/\nC9ydmRcArwHbSvs24LXSfnc5T5I0QI3CPSLWANcAXyz7AXwUeKCcshu4tmxvLvuU45vK+ZKkAWn6\nCdXPA38GfKDsnwu8npnzZf8IsLpsrwZeAsjM+Yh4o5z/avcbRsR2YDvA1NQU7Xb7FH+EyTE3N9e3\nOu3YOL/0ST3Uzz/vftapJtapmXGt05LhHhG/DxzLzAMR0erVN87MGWAGYHp6Olutnr11tdrtNr2s\nU/dyAINeieLwllbf3rvXdaqVdWpmXOvU5G/05cAfRMTVwC8AvwTcA6yMiBVl9L4GmC3nzwJrgSMR\nsQI4C/hBz3suSVrUknPumfnnmbkmM9cBNwCPZuYW4DHgunLaVuChsr237FOOP5qZ2dNeS5Le1XKe\nc78DuD0iDtGZU99V2ncB55b224Gdy+uiJOlkndREa2a2gXbZfh64dIFzfgJ8vAd9kySdIj+hKkkV\nMtwlqUKGuyRVyHCXpAoZ7pJUIf+BbI0U/xFtqTccuUtShRy5aygcoUv9Zbhr6N6+gJmkXnBaRpIq\nZLhLUoUMd0mqkHPuE8b5bWkyOHKXpAoZ7pJUIcNdkipkuEtShQx3SaqQT8toZLlEgXTqHLlLUoUM\nd0mqkOEuSRUy3CWpQoa7JFXIcJekChnuklQhw12SKmS4S1KFDHdJqpDhLkkVMtwlqUIuHKax4CJi\n0slx5C5JFTLcJalChrskVchwl6QKeUNVY8ebq9LSlhy5R8TaiHgsIp6NiGci4rbSfk5EPBIRz5Wv\nZ5f2iIgvRMShiHgqIi7u9w8hSXq7JtMy88COzNwAXAbcEhEbgJ3AvsxcD+wr+wBXAevLf9uBe3ve\na0nSu1oy3DPzaGY+UbZ/BBwEVgObgd3ltN3AtWV7M3BfdnwHWBkR5/W855KkRUVmNj85Yh3wbeBC\n4MXMXFnaA3gtM1dGxNeBuzLz38qxfcAdmbn/hPfaTmdkz9TU1If27Nmz/J+mcnNzc5x55pnLeo+n\nZ9/oUW9Gw8bVZ72jrRd1mgTWqZlRrtMVV1xxIDMvWehY4xuqEXEm8DXg05n5w06ed2RmRkTz3xKd\n18wAMwDT09PZarVO5uUTqd1us9w63dR1M7IGh7e03tHWizpNAuvUzLjWqdGjkBHxXjrBfn9mPlia\nXzk+3VK+Hivts8DarpevKW2SpAFp8rRMALuAg5n5ua5De4GtZXsr8FBX+yfKUzOXAW9k5tEe9lmS\ntIQm0zKXAzcCT0fEk6XtM8BdwJ6I2Aa8AFxfjj0MXA0cAn4M3NzTHkuSlrRkuJcbo7HI4U0LnJ/A\nLcvslyRpGVx+QJIqZLhLUoUMd0mqkOEuSRVyVUiNNVeIlBbmyF2SKmS4S1KFDHdJqpDhLkkVMtwl\nqUKGuyRVyEchVY3jj0Xu2Dj/tnXrfURSk8iRuyRVyHCXpAoZ7pJUIcNdkirkDVVVz/VnNIkcuUtS\nhRy5T4DukaukyeDIXZIq5MhdE8X5d00Kw10Ty6BXzZyWkaQKGe6SVCGnZSrlEzLSZHPkLkkVcuQu\nvYsT/w/IG68aF47cJalCjtwr4jy7pOMMd+kE/pJUDQz3MeSHb3rPQFdtDPcxZygNlr9YNS68oSpJ\nFXLkLvWAI3qNGsNdOkWLTYkZ9BoFhrvURwa9hsVwH2Enjgx3bJznJm+gji2DXoPUl3CPiCuBe4DT\ngC9m5l39+D7SuFpsSsfQV6/0PNwj4jTgb4DfBY4A342IvZn5bK+/Vy0c0WkhXhdajn6M3C8FDmXm\n8wAR8RVgMzDQcF/sL0a/FoLq1V9En1ufbE1u0nZb7FpbzvU46F8qk/hLbBA/c2Rmb98w4jrgysz8\nZNm/EfitzLz1hPO2A9vL7oXA93rakTr9MvDqsDsxBqxTM9apmVGu069m5tRCB4Z2QzUzZ4AZgIjY\nn5mXDKsv48I6NWOdmrFOzYxrnfrxCdVZYG3X/prSJkkakH6E+3eB9RFxfkScDtwA7O3D95EkLaLn\n0zKZOR8RtwL/QudRyC9l5jNLvGym1/2olHVqxjo1Y52aGcs69fyGqiRp+FwVUpIqZLhLUoWGHu4R\ncWVE/GdEHIqIncPuz6iKiMMR8XREPBkR+4fdn1EREV+KiGMR8b2utnMi4pGIeK58PXuYfRwFi9Tp\nLyJitlxTT0bE1cPs4yiIiLUR8VhEPBsRz0TEbaV97K6poYZ711IFVwEbgD+KiA3D7NOIuyIzLxrH\nZ2776MvAlSe07QT2ZeZ6YF/Zn3Rf5p11Ari7XFMXZebDA+7TKJoHdmTmBuAy4JaSSWN3TQ175P6z\npQoy8y3g+FIFUiOZ+W3gv09o3gzsLtu7gWsH2qkRtEiddILMPJqZT5TtHwEHgdWM4TU17HBfDbzU\ntX+ktOmdEvhWRBwoSzdocasy82jZfhlYNczOjLhbI+KpMm0z8lMNgxQR64DfBB5nDK+pYYe7mvtw\nZl5MZwrrloj4yLA7NA6y86yvz/su7F7g14GLgKPAXw+3O6MjIs4EvgZ8OjN/2H1sXK6pYYe7SxU0\nlJmz5esx4J/oTGlpYa9ExHkA5euxIfdnJGXmK5n5f5n5U+Bv8ZoCICLeSyfY78/MB0vz2F1Tww53\nlypoICLOiIgPHN8Gfg9X0Xw3e4GtZXsr8NAQ+zKyjodV8TG8poiIAHYBBzPzc12Hxu6aGvonVMvj\nV5/n50sV/OVQOzSCIuLX6IzWobNkxN9bp46I+AegRWdZ1leAO4F/BvYAvwK8AFyfmRN9M3GROrXo\nTMkkcBj446555YkUER8G/hV4Gvhpaf4MnXn3sbqmhh7ukqTeG/a0jCSpDwx3SaqQ4S5JFTLcJalC\nhrskVchwl6QKGe6SVKH/B483OSIPogIHAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "3doMXvjy3h9Y", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Por fim o desvio padrão:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "X85nGlGD3hQ_", | |
"colab_type": "code", | |
"outputId": "325d21e1-ae2a-4728-a63e-c3f4b8fe0112", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"std_bomdia=df['Hora Frac'].std();std_bomdia" | |
], | |
"execution_count": 175, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"1.3861465059788622" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 175 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "9EMxkNFG3q6m", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Portanto, 95% dos BDs estão entre:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "hAsfwjHr3uR8", | |
"colab_type": "code", | |
"outputId": "bd93ac46-ca4a-40da-9dcc-c1bc0538b728", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 50 | |
} | |
}, | |
"source": [ | |
"print(media_bomdia-2*std_bomdia)\n", | |
"print(media_bomdia+2*std_bomdia)" | |
], | |
"execution_count": 176, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"5.1163221249182556\n", | |
"10.660908148833705\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "JiSRpcN33_0A", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"### Madrugadores da família\n", | |
"Aqueles que em média deram bom dia mais cedo:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "7A71ccV5sSz5", | |
"colab_type": "code", | |
"outputId": "94d13344-d9ea-4ca3-ac65-8a2cce6a5506", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 373 | |
} | |
}, | |
"source": [ | |
"df.groupby('Deu BD').mean().sort_values('Hora Frac').head(10)" | |
], | |
"execution_count": 177, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Hora Frac</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Deu BD</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>Dominick Hendricks</th>\n", | |
" <td>5.458333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Bernice Palacios</th>\n", | |
" <td>5.850000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>John Pera</th>\n", | |
" <td>6.066667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Jon Sloan</th>\n", | |
" <td>6.356978</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Mildred Johnson</th>\n", | |
" <td>6.731403</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Dorothy Giles</th>\n", | |
" <td>6.994444</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Christopher Clark</th>\n", | |
" <td>7.007292</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Tracy Zipfel</th>\n", | |
" <td>7.091667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>James Mattingly</th>\n", | |
" <td>7.112667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Everett Brooks</th>\n", | |
" <td>7.361332</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Hora Frac\n", | |
"Deu BD \n", | |
"Dominick Hendricks 5.458333\n", | |
"Bernice Palacios 5.850000\n", | |
"John Pera 6.066667\n", | |
"Jon Sloan 6.356978\n", | |
"Mildred Johnson 6.731403\n", | |
"Dorothy Giles 6.994444\n", | |
"Christopher Clark 7.007292\n", | |
"Tracy Zipfel 7.091667\n", | |
"James Mattingly 7.112667\n", | |
"Everett Brooks 7.361332" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 177 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "fgw5cTrb4G4W", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"### Tardões da família\n", | |
"Aqueles que em média deram bom dia mais tarde:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "17ogb3jBtgFC", | |
"colab_type": "code", | |
"outputId": "54a0c2d4-6443-45b1-e7f1-b051f7386287", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 373 | |
} | |
}, | |
"source": [ | |
"df.groupby('Deu BD').mean().sort_values('Hora Frac', ascending=False).head(10)" | |
], | |
"execution_count": 178, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Hora Frac</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Deu BD</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>Jerry Bee</th>\n", | |
" <td>12.858333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Cristina Carriger</th>\n", | |
" <td>11.616667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Kimberly Deason</th>\n", | |
" <td>11.383333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Thomas Saunders</th>\n", | |
" <td>11.122222</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Corina Jones</th>\n", | |
" <td>10.608333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Sarah Behel</th>\n", | |
" <td>10.562821</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Merrill Williams</th>\n", | |
" <td>10.076905</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Charles Nix</th>\n", | |
" <td>9.933333</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Edward Marrow</th>\n", | |
" <td>9.822222</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Margery Frost</th>\n", | |
" <td>9.466667</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Hora Frac\n", | |
"Deu BD \n", | |
"Jerry Bee 12.858333\n", | |
"Cristina Carriger 11.616667\n", | |
"Kimberly Deason 11.383333\n", | |
"Thomas Saunders 11.122222\n", | |
"Corina Jones 10.608333\n", | |
"Sarah Behel 10.562821\n", | |
"Merrill Williams 10.076905\n", | |
"Charles Nix 9.933333\n", | |
"Edward Marrow 9.822222\n", | |
"Margery Frost 9.466667" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 178 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "NxqJZfjq4L-H", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"No entanto, alguns deram bom dia poucas vezes e sendo assim não há significância estatística. Por exemplo, o primeiro colocado somente deu bom dia duas vezes:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "8En1n84Dt-tH", | |
"colab_type": "code", | |
"outputId": "85979ee0-2983-45e6-d95c-ec03b75a56c7", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 47 | |
} | |
}, | |
"source": [ | |
"df[df['Deu BD']=='Stormy Cahoon']" | |
], | |
"execution_count": 179, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Data</th>\n", | |
" <th>Hora</th>\n", | |
" <th>Deu BD</th>\n", | |
" <th>Hora Frac</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
"Empty DataFrame\n", | |
"Columns: [Data, Hora, Deu BD, Hora Frac]\n", | |
"Index: []" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 179 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "lM6ipt85wc4o", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Portanto, para ter uma significância estatística, vamos selecionar apenas aqueles que deram bom dia pelo menos 10 vezes:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "IH3ksEV1wA_k", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"bomdiadores=df['Deu BD'].value_counts().index[df['Deu BD'].value_counts().values>10]" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "LjhKu9x64qOK", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"### Madrugadores da Família com Significância Estatística\n", | |
"Aqueles que em média deram bom dia mais cedo e pelo menos 10 vezes:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ryOETLQKxRfF", | |
"colab_type": "code", | |
"outputId": "bcd73578-781b-4b79-9f7e-ec043c9e0ed8", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 373 | |
} | |
}, | |
"source": [ | |
"df[df['Deu BD'].isin(bomdiadores)].groupby('Deu BD').mean().sort_values('Hora Frac').head(10)" | |
], | |
"execution_count": 181, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Hora Frac</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Deu BD</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>Jon Sloan</th>\n", | |
" <td>6.356978</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Mildred Johnson</th>\n", | |
" <td>6.731403</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Christopher Clark</th>\n", | |
" <td>7.007292</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>James Mattingly</th>\n", | |
" <td>7.112667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Everett Brooks</th>\n", | |
" <td>7.361332</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Eric Morris</th>\n", | |
" <td>7.372024</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Charles Hudkins</th>\n", | |
" <td>7.448701</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Grady Kolling</th>\n", | |
" <td>7.620264</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Elizabeth Mcwilliams</th>\n", | |
" <td>7.642702</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Thomas Ellis</th>\n", | |
" <td>7.680792</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Hora Frac\n", | |
"Deu BD \n", | |
"Jon Sloan 6.356978\n", | |
"Mildred Johnson 6.731403\n", | |
"Christopher Clark 7.007292\n", | |
"James Mattingly 7.112667\n", | |
"Everett Brooks 7.361332\n", | |
"Eric Morris 7.372024\n", | |
"Charles Hudkins 7.448701\n", | |
"Grady Kolling 7.620264\n", | |
"Elizabeth Mcwilliams 7.642702\n", | |
"Thomas Ellis 7.680792" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 181 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "4vPhU2iV_ouC", | |
"colab_type": "code", | |
"outputId": "1079fea5-815b-4cb4-eb28-02fa08a9c194", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 392 | |
} | |
}, | |
"source": [ | |
"df[df['Deu BD'].isin(bomdiadores)].groupby('Deu BD').mean().sort_values('Hora Frac').head(10).plot.bar()" | |
], | |
"execution_count": 182, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fb7d70a20f0>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 182 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAFmCAYAAABEGtCYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZycRbX/8c83CyZEFsERFQgJqCAi\nRBxEFr0CF2URXAABgRsWjRuLejVuVwH1hyAoInjViARZBNkRFNkUWQUmEHaVVYl6IYCEJWyJ5/dH\nPZ30dHqWmOl6Kpnv+/Wa10x3z0ydzKTPPF116pQiAjMzK9eIugMwM7P+OVGbmRXOidrMrHBO1GZm\nhXOiNjMrnBO1mVnhBpWoJX1G0l2S7pR0hqQxnQ7MzMySARO1pNWBg4HuiNgAGAns0enAzMwsGbUY\nnzdW0kvA8sDf+/vkV77ylTFhwoQlDM3MbPiYMWPGYxHR1e6xARN1RPxN0jHAX4HngMsi4rLWz5M0\nBZgCMH78eHp6epYsajOzYUTSX/p6bDBTH68A3gdMBF4LjJO0d+vnRcS0iOiOiO6urrZ/FMzM7N8w\nmMXE/wQejIjZEfEScB6weWfDMjOzhsEk6r8Cb5e0vCQB2wD3dDYsMzNrGMwc9Y2SzgFuAeYBtwLT\nFnegl156iVmzZvH8888vfpTWy5gxY1hjjTUYPXp03aGYWQaDqvqIiEOBQ5dkoFmzZrHCCiswYcIE\n0oW5/Tsigscff5xZs2YxceLEusMxswyy7Ux8/vnnWXXVVZ2kl5AkVl11Vb8yMRtGsm4hd5IeGv45\nmg0vw6rXx8tf/vJet08++WQOPPDAIR/noYceYuzYsUyaNGnB24svvjjk45jZ8DDYnYlDbsIXfzWk\n3++hI3cc0u/Xzrx58xg1anA/snXWWYeZM2cOyfcys3oNRb5akhzlTFF56KGH2H///Xnsscfo6upi\n+vTpjB8/nn333ZcxY8Zw6623ssUWW7DHHntwyCGH8PzzzzN27FimT5/OuuuuO6gxDjvsMO6//34e\neOABxo8fz7e+9S322Wcfnn32WQBOOOEENt88lagfddRRnHbaaYwYMYLtt9+eI488smP/drOS1Z0k\nSzCsEvVzzz3HpEmTFtx+4okn2HnnnQE46KCDmDx5MpMnT+akk07i4IMP5oILLgBSxcr111/PyJEj\neeqpp7jmmmsYNWoUV1xxBV/+8pc599xzFxnr/vvvXzDWFltswQ9+8AMA7r77bq699lrGjh3L3Llz\nufzyyxkzZgz33nsve+65Jz09PVxyySVceOGF3HjjjSy//PI88cQTnf7RmC3CCbIcwypRjx07ttd0\nxMknn7ygJ8kNN9zAeeedB8A+++zD1KlTF3zebrvtxsiRIwGYM2cOkydP5t5770USL730Utux+pr6\n2HnnnRk7diyQassPPPBAZs6cyciRI/nzn/8MwBVXXMF+++3H8ssvD8Aqq6yypP90M1uKDavFxH/X\nuHHjFnz81a9+la222oo777yTiy66aLHL5Jq/17HHHstqq63GbbfdRk9PjxcczawtJ+rK5ptvzpln\nngnA6aefzjve8Y62nzdnzhxWX311IF2RL4k5c+bwmte8hhEjRnDqqacyf/58ALbddlumT5/O3Llz\nATz1YTbMDaupj/4cf/zx7Lfffhx99NELFhPbmTp1KpMnT+ab3/wmO+64ZPNvn/zkJ9lll1045ZRT\n2G677RZcbW+33XbMnDmT7u5ulltuOXbYYQeOOOKIJRrLli6eH7Zmiogh/6bd3d3R2o/6nnvu4Y1v\nfOOQjzVc+ee5bCshUZcQQylx5IhB0oyI6G73mK+ozZqUkBTMWjlRWzGcJM3a82KimVnhsibqTsyH\nD0f+OZoNL9kS9ZgxY3j88cedZJZQox/1mDFj6g7FzDLJNke9xhprMGvWLGbPnp1ryGVW44QXMxse\nsiXq0aNH+0QSM7N/w4CJWtK6wC+a7lob+FpEfK9jUVlWrrYwK9tgDrf9EzAJQNJI4G/A+R2Oy8zM\nKou7mLgNcH9E/KUTwZiZ2aIWd456D+CMdg9ImgJMARg/fvwShjV8eNrBzAYy6CtqScsBOwNnt3s8\nIqZFRHdEdHd1dQ1VfGZmw97iTH1sD9wSEY90KhgzM1vU4iTqPelj2sPMzDpnUIla0jhgW+C8zoZj\nZmatBrWYGBHPAqt2OBYzM2vD3fPMzArnRG1mVrhhe3CA65fNbGnhK2ozs8I5UZuZFc6J2syscE7U\nZmaFc6I2MyucE7WZWeGcqM3MCudEbWZWOCdqM7PC1bIz0bsCzcwGz1fUZmaFc6I2MyucE7WZWeGc\nqM3MCudEbWZWuMGembiypHMk/VHSPZI263RgZmaWDLY87zjgNxGxq6TlgOU7GJOZmTUZMFFLWgl4\nJ7AvQES8CLzY2bDMzKxhMFMfE4HZwHRJt0o6UdK41k+SNEVSj6Se2bNnD3mgZmbD1WAS9ShgY+CH\nEfEW4Fngi62fFBHTIqI7Irq7urqGOEwzs+FrMIl6FjArIm6sbp9DStxmZpbBgIk6Iv4PeFjSutVd\n2wB3dzQqMzNbYLBVHwcBp1cVHw8A+3UuJDMzazaoRB0RM4HuDsdiZmZteGeimVnhnKjNzArnRG1m\nVjgnajOzwjlRm5kVzonazKxwTtRmZoVzojYzK5wTtZlZ4ZyozcwK50RtZlY4J2ozs8I5UZuZFc6J\n2syscE7UZmaFc6I2MyucE7WZWeGcqM3MCjeoo7gkPQQ8DcwH5kWEj+UyM8tksIfbAmwVEY91LBIz\nM2vLUx9mZoUbbKIO4DJJMyRNafcJkqZI6pHUM3v27KGL0MxsmBtsot4yIjYGtgc+JemdrZ8QEdMi\nojsiuru6uoY0SDOz4WxQiToi/la9fxQ4H3hbJ4MyM7OFBkzUksZJWqHxMfBu4M5OB2ZmZslgqj5W\nA86X1Pj8n0fEbzoalZmZLTBgoo6IB4CNMsRiZmZtuDzPzKxwTtRmZoVzojYzK5wTtZlZ4ZyozcwK\n50RtZlY4J2ozs8I5UZuZFc6J2syscE7UZmaFc6I2MyucE7WZWeGcqM3MCudEbWZWOCdqM7PCOVGb\nmRXOidrMrHBO1GZmhRt0opY0UtKtki7uZEBmZtbb4lxRHwLc06lAzMysvUElaklrADsCJ3Y2HDMz\nazXYK+rvAVOBf/X1CZKmSOqR1DN79uwhCc7MzAaRqCW9F3g0Imb093kRMS0iuiOiu6ura8gCNDMb\n7gZzRb0FsLOkh4Azga0lndbRqMzMbIEBE3VEfCki1oiICcAewG8jYu+OR2ZmZoDrqM3MijdqcT45\nIq4CrupIJGZm1pavqM3MCudEbWZWOCdqM7PCOVGbmRXOidrMrHBO1GZmhXOiNjMrnBO1mVnhnKjN\nzArnRG1mVjgnajOzwjlRm5kVzonazKxwTtRmZoVzojYzK5wTtZlZ4ZyozcwK50RtZla4ARO1pDGS\nbpJ0m6S7JB2eIzAzM0sGc2biC8DWEfGMpNHAtZIuiYg/dDg2MzNjEIk6IgJ4pro5unqLTgZlZmYL\nDWqOWtJISTOBR4HLI+LGNp8zRVKPpJ7Zs2cPdZxmZsPWoBJ1RMyPiEnAGsDbJG3Q5nOmRUR3RHR3\ndXUNdZxmZsPWYlV9RMSTwO+A7ToTjpmZtRpM1UeXpJWrj8cC2wJ/7HRgZmaWDKbq4zXAzySNJCX2\nsyLi4s6GZWZmDYOp+rgdeEuGWMzMrA3vTDQzK5wTtZlZ4ZyozcwK50RtZlY4J2ozs8I5UZuZFc6J\n2syscE7UZmaFc6I2MyucE7WZWeGcqM3MCudEbWZWOCdqM7PCOVGbmRXOidrMrHBO1GZmhXOiNjMr\nnBO1mVnhBnO47ZqSfifpbkl3STokR2BmZpYM5nDbecB/R8QtklYAZki6PCLu7nBsZmbGIK6oI+If\nEXFL9fHTwD3A6p0OzMzMksWao5Y0gXQi+Y1tHpsiqUdSz+zZs4cmOjMzG3yilvRy4Fzg0xHxVOvj\nETEtIrojorurq2soYzQzG9YGlagljSYl6dMj4rzOhmRmZs0GU/Uh4KfAPRHx3c6HZGZmzQZzRb0F\nsA+wtaSZ1dsOHY7LzMwqA5bnRcS1gDLEYmZmbXhnoplZ4ZyozcwK50RtZlY4J2ozs8I5UZuZFc6J\n2syscE7UZmaFc6I2MyucE7WZWeGcqM3MCudEbWZWOCdqM7PCOVGbmRXOidrMrHBO1GZmhXOiNjMr\nnBO1mVnhnKjNzAo3mMNtT5L0qKQ7cwRkZma9DeaK+mRguw7HYWZmfRgwUUfE1cATGWIxM7M2hmyO\nWtIUST2SembPnj1U39bMbNgbskQdEdMiojsiuru6uobq25qZDXuu+jAzK5wTtZlZ4QZTnncGcAOw\nrqRZkg7ofFhmZtYwaqBPiIg9cwRiZmbteerDzKxwTtRmZoVzojYzK5wTtZlZ4ZyozcwK50RtZlY4\nJ2ozs8I5UZuZFc6J2syscE7UZmaFc6I2MyucE7WZWeGcqM3MCudEbWZWOCdqM7PCOVGbmRXOidrM\nrHBO1GZmhRtUopa0naQ/SbpP0hc7HZSZmS00mMNtRwI/ALYH1gf2lLR+pwMzM7NkMFfUbwPui4gH\nIuJF4EzgfZ0Ny8zMGhQR/X+CtCuwXUR8pLq9D7BpRBzY8nlTgCnVzXWBPy1BXK8EHluCrx8qJcRR\nQgxQRhwlxABlxFFCDFBGHCXEAEsex1oR0dXugVFL8E17iYhpwLSh+F6SeiKieyi+19IeRwkxlBJH\nCTGUEkcJMZQSRwkxdDqOwUx9/A1Ys+n2GtV9ZmaWwWAS9c3A6yVNlLQcsAfwy86GZWZmDQNOfUTE\nPEkHApcCI4GTIuKuDsc1JFMoQ6CEOEqIAcqIo4QYoIw4SogByoijhBigg3EMuJhoZmb18s5EM7PC\nOVGbmRXOidrMrHDFJGpJIyW9VtL4xlvdMdVB0tdbbo+UdHrmGL4j6U05x+wjjkMkrajkp5JukfTu\nGuIYJ2lE9fEbJO0saXTmGEr5WXywzds2kl6VO5YqnldI2rCOsVviGCFpxU59/yIStaSDgEeAy4Ff\nVW8X1xDHFpIul/RnSQ9IelDSA5nDWFPSl6p4XgacB9ybOYZ7gGmSbpT0cUkrZR6/Yf+IeAp4N/AK\nYB/gyBriuBoYI2l14LIqjpMzx1DKz+IA4ERgr+rtJ8AXgOuqXcsdJ+mq6o/WKsAtwE8kfTfH2C1x\n/LyKYxxwJ3C3pM93YqwiEjVwCLBuRLwpIt5cvdXxV/KnwHeBLYFNgO7qfU77A2+ukvVFwO8i4rCc\nAUTEiRGxBfBfwATg9uo/5VY54wBUvd8BOLUqC1U/n9+xOCJiLvBB4H8jYjcg9yuOUn4Wo4A3RsQu\nEbELqVFbAJuSEnYOK1V/tD4InBIRmwL/mWnsZutXcbwfuASYSPoDOuRKSdQPA3PqDgKYExGXRMSj\nEfF44y3HwJI2lrQx8BbgOGB30pX01dX9WVVdE9er3h4DbgM+K+nMjGHMkHQZKTldKmkF4F8Zx2+Q\npM1IV5C/qu4bmTmGUn4Wa0bEI023H63uewJ4KVMMoyS9BvgQNbzybjK6mgJ7P/DLiHiJ9EdryA1Z\nr48l9ABwlaRfAS807oyI3C9nfifpaNJ0Q3Mct2QY+zstt/9Julr5DumXv3WGGACQdCywE3AlcERE\n3FQ9dJSkJWm2tbgOACYBD0TEXEmrAvtlHL/h08CXgPMj4i5JawO/yxxDKT+LqyRdDJxd3d6lum8c\n8GSmGL5O2oB3bUTcXP0+ck8PAvwYeIh0EXO1pLWApzoxUBEbXiQd2u7+iDg8cxztnnwREVmSZLVg\ntVtE/CLHeP3EsR9wVkQ82+axlSIiy6sfSV+PiK813R5Jeqm7V47xS1PNka9F0wVWRFydOQaRkvMW\n1V3XAedGCYmkAJJGRcS8If++/vmWpc5OYANNsWR6ZbGApOnAnyPiW9XC6lnArbnm7CV9LyI+Leki\n2rykjYidc8RRxXIUaTrsbmD+whDyxVAKSROBg0jrJ81/tLL8LCTtHRGnSfpsu8c7MRNQxNSHpC5g\nKmmBZkzj/lxXsk1xrAQcCryzuuv3wNdzXUFWrpD0OeAXwIIr2moOsNNap1+aZZ1+qewPnF4trG4F\nXBIRx2Yc/9Tq/TEZx+zL+0kL7i8M+JkdJOmDwFHAq0iLmSL9wehYaVobF5AW/i+innn6cdX7FXIN\nWMQVdbVI8gvgc8DHgcnA7IjItYrciONcUpnNz6q79gE2iogPZozhwTZ3R0SsnSuGurVc2Y8mzQVe\nR3pyZr2yL2W6RdIlpGmxZ2qO4z5gp4i4p8YYbqwqPYaNUhL1jIh4q6TbG2V5km6OiKylcZJmRsSk\nge5b1lVXTa3mAHdExKMZxu9voS7bmkGDpGuBrauj6GpRXURsRFrgbV7oPjhzHNdVpZu1kfRh4PWk\nmvbci/5I+n5/j3fid1LE1AcLy3r+IWlH4O/AKjXE8ZykLSPiWkgbYIDncgchaQNSxUfzNNApGUM4\nANiMhZUN7wJmABOrBb5T+/rCoRARueu1B/IAaUPHL+k9HZWzKumXlNEHvkfSL0jTD81J8ryMMbyZ\n9Gp3axZOfeScmpuRaZwFSknU36zmh/8bOB5YEfhMDXF8AvhZFYuAJ4B9cwZQVcC8i5Sof006/f1a\nIGeibmxqeKSKabVq/E1Ju/Q6mqgbClkzALi/ehtBxnnJZhHxs4E/K4sVgbmkHZINQSppzWU3YO26\nXuHU8bsoYuqjNI09+9Wuo9xj30F6iXtrRGxUJcnTImLbjDHcHRHrN90WcFdErC/p1oh4S6Y4Slgz\nGAkcFRGfyzVmy/hnRcSHqv8X7SpPau9zkZukC4ApOabh+hi/bRVQQyeqT4q4opa0BulKekvSD+Aa\n4JCImJU5jkOA6cDTpP4BGwNfjIjLMobxXET8S9K86g/Go/Q+szKHEjY1AKxTbVNuOFzSzIzjExHz\nqymwuhxSvX9vjTEgaWpEfFvS8bT/g5Fzrnxl4I+Sbqb39EuuUsXsVUBFJGpScvw56SUNwN7Vfdmu\nIiv7R8Rxkt4DrEq6gjuVtGiRS4+klUnNbmYAzwA3ZBwf4FP03tRwCgs3NeScPy5izQCYWc1Pn03v\nOeqOv9yPiH9UH64fEZc0Pybp48CPOh1DpVHl0ZNpvP603SCX0a19vdpWh7p+FjH1UUq1RaPqRNJx\nwFURcX7Ol/pt4pkArBgRt9cxft0kTSJNezSvGUzO/fOoNt60iojYP2MM1wP/ExG/rW5PBbaKiO1z\nxWCJpFsiYuPq4ysjYpt2jw2lUq6oH5e0N3BGdXtPIEszpBaNxjcTgS/lbHzT365ASRtnrh0uYVMD\nETET2KjONYNq3Dp6arTaGbhYqY3mdqRmWe/LNXgd87L9xPJ20lTpG4HlSA2yns34/7O5a2FrdVpH\nOhqWkqj3J/3gjyX9Z7ieehrO1Nn4pqRdgd+m5k0NsGjVh6Raqj6a1lAaU0HZ11Ai4jFJOwNXkKbE\nds3cX6OE3ZkNJwB7kKaiuknteN+Qcfzo4+N2t4dEEVMfJSmh8U3dStjUUMVRe9VHFcflpDWURlni\n3sBeOSpxJD1NevKrer8cMK/6OPurnBI0+uG0bJDLWY00i9S3XqQy4kY9vYBPR8SQL/7Xmqj7WkFu\nqGHXVW2Nb6qpH7VuJlE6NWN+RPy80zE0jXkc8Grq3dRQ0tpFEXHUqa/yQBZOi2UrE5R0NemggBOB\n/wP+AewbERtlGr/fxczoQNfPuqc+SlhBblZn45uDgG3a3H8eaZNJtkRNGZsaoJyqj9rWUPpbu4Cs\nfU9qLQ9ssQ9pXvpA0hXtmqQqpSw6kYgHUtzUh6RXAE9mnn9rjF1b45v+VoubX+INJ5I2IpUGNs5s\n/Cf1VH2sRZqj3oyFaygHR8RfM4zd2MY/hjQfexvpKnZDoCciNut0DG1iWo2FR9TdVNfGk+Gk1itq\nSV8jNaj/o1K/4UtIi3nzJH04Iq7IHNJcUs1sHY1vxkoaFy3N+qvKk+UyjF/UpgalQxTWrXZn1l31\n8RdS1UUdY28FIOk8YOOIuKO6vQFwWO54JH0IOBq4ivQH43hJn4+IczKMPWx3adY99bE78I3q48mk\nX3wXaQX3Z6QV7pzqbHzzU+AcSR+vEkOjjvoH1WM5FLOpodqdOZX0h7yWBK0auqT1Y91Gkq7GvlPS\nGzOO3/AVYJPGVbRSL/krgI4nagrZpVmHuhP1i01THO8BzoyI+cA9krLHVmfjm4g4RtIzpLPXXl7d\n/QxwZET8MFMMF1Ufzo2Is5sfk7Rbmy/ptDoPUYDUG/1O0skyf6dDNbKDdLukE4HTqtt7AXVshBrR\nMtXxOJkOyW7s0mxcyNStpeXEiaSDqTvScqLuqo8/AB8BHgH+BLw1Ih6sHvtjRKyXOZ4tSC8nG+V5\njRXtrE37q+kOIuLpnOM2jb/IfHmndlwNEEethyhUdfS7kV75zSP9wTgnInL2O2nEMobU3bHRSfBq\n4IcR8XzmOI4mzY83FlZ3J/Upn5ph7Eap4iIPUUOpoqTbqqm59wAfA74KnNqJ50ndiXpT0hRHF/C9\niPhGdf8OwD4RsWfmeP5IWkWewcLyPCKijl2S2UnaHtgB+BApKTWsSOo18bZaAitAtellD+CzwBda\nyyiHk2rn6pbVzWuAC+pY/K9bzpYTxVV91EnD8IifZlWVxSTg68DXmh56GvhdRPwzYyxrkbYFP1Zt\nGd4SuC8iLsgVQ1MsG5NK8rYl/RH/TkTcnTmGB2m/gJbr1cXkdlODkkaTjirr+EWVpH4PE8k4JQYs\n6AGzOqnlxEakksGrIuKtQz6WE3WvWtUPkX7Y51HPET8jgLdHxPU5xusnjqkR8e2W+w6JiOMyjf9V\n0oENAZxJ2txwFenggtsi4tOZ4vg6sCNpkfVM4DcRMS/H2G1iWbXp5hjSlMwqEfG1Pr5kqMe/BfhR\nRExrum8ccD7wcEQckCGGxh+rdmsFdUxRjmBhy4knq9/R6p0oH3WipletajsRGc/oy7kVtp8Y2s1R\n59yiezfpCbA88Ffg1ZF6r4wCZkbEBpni+BfwIKlsExZe0WbfjdeOqrNGM421CvAb0iEW36+qPX4N\nXBkRX8wRQ4mqfR+vp/exeUPecqLuqo8iRFln9F0paRfgvNzzfpL2BD4MTFTqv9ywAqnFaC7PRzpm\n6UVJ90fEXICImCcp5/FLEzOO1a+WHYojSJtfsj1/I+IJSf8JXCLptaTOfT/K9SoLQNJ61Z6Ltot1\nGXdpNuL5CKlkcA1gJvB2Uu/4Ib+wKyZRS9ocmEDvZkg5zwlcpFsb9ZzR9zHSgtV8Sc+Rd0X7elLf\nhFfSu5vf0+QtBVu5WrASsKIWnoouFu5S7LhSysAqzb+PecBDpKm6LJp+B9NITYiuBB5u3B95+sB8\nFphC+06TuTtMQkrSmwB/iIitJK0HHNGJgYqY+pB0KrAO6a9SczOk3E2ZiujWNtypfaP+BaKM/tDD\nygC/k4iMhyiUQtLNEbGJ0vFwm0bEC5Luiog3DflYhSTqe0jlX7UGowK6pEkSaTPDxIj4hqQ1gddE\nxE0ZY6i7MbtVJH22v8cj4rv9Pb4sknQt6dXuNcB1Ne43OJ/Ur/7TpKv5fwKjI2KHoR4ry46iQbiT\n1Fazbs9JatSH1tWt7X9JzX8+XN1+hrSNPKcTSOVo9wJjSZuScsdQDEnjqhX+xu0RkpbPNPwKTW+f\na7m9QqYYSrMPaYPcLsD1knokHZs7iIj4QEQ8GRGHkTa7/JTUgXPIlTJH/Urgbkk3Uc+pwg2fAH5W\nzVU3zujbN3MMm0bExpJuBYiIf0rK0pSpWUTcJ2lktaV/ehXPl3LHUYgrSSWCja6Ky5MOPN680wNH\nU0tNSe+PGlpsliYiHpT0PPBi9bYV6dVfdlXVx5qkdZyngQ2AIV/ULCVRH1Z3AFDMGX0vSRpJVQpW\nlUFlObexydzqj8NMSd8mLTBmf/Ul6WXR0hu83X0ZjImm1rcR8UzGK+pm9c9TFkDS/cBjpB7tPwUO\niojczxEkfYN0IfcAC5+jHVnULCJRR8TvVWOP277mAdN0MS8A9wOXZfrP8H3SJoJXSfp/wK7A/2QY\nt1mtjdmb3AC0lmK1u6/TnlXTAcOS3ko9BxjUTtIM4CTg5zl3qrb4Pmmn6p6kRki/l3R1RNyfOY4P\nAetUpaQdVcpiYmuP23cAWXrcVuP3d7TOKOBNwLyIyFIOVZX5bEP6WVwZNR8ym5ukV5O25p5Gmqtv\n7ERbkVS7m7tZ1yaknYmNDnqvBnaPiBkZxm7uvfw64L7GQ9Sw6UbS60gLaLuT2uFOJ13E1HHQx8ur\nWD4HrBERIzOPfy7wiRwXlaUk6tuAbaOlx21kOgNtMJTxlJVq6mM1eteU5zhNpN9a6Yz//smkl5Td\nwM0sTNRPAT/LVLPbGtNoYN3q5p8i4qVM467V3+N11XpXi6vvBX5IKqmdDhyXo9+GpO+QrqhfTqr9\nvxa4JiIe6PTYLXF0AxeSiiE6urZWSqK+IyLe3HR7BKmnw5v7+bJlkqSDSJtuHiE9AbJdOVX1oEGa\n+7uIlpf3uZNCHz1HJkbVCjfD+FtHxG+bNnv0UscfjBJI2pB0JbsDcClwOilx7pOjlFXSrqTE/Ein\nxxogjruAHwN30LSOFBG/H+qxipijBn4j6VIW9rjdg3Qs13B0COk0j+ytVSNiUjXtsicpWd9dvb+s\npmZEewDfbrnvHCBLfwvgP4DfAju1eayOw35rV81RP0laxPti08LujVU5aw7zgQV9uCWtDLwr8ndW\nnBsR/Z4CNFSKuKKGBVtUG7/oa2r4oRehahC1bU2JsTWW3Un100dFxNEZx12PtC7wbeDzTQ+tSFq7\nGPKdX/3EMgLYNSLOyjVmySStnXuKoU0M7TamZW9mJum7pCmPX9Lhbpt1H27bfGJDc+vCKVWd5P3A\nVyLiyg7HUfvur6YYHgCukvQrev/ys+xAk7Q66Ur2A6SdVp8hVaHktC5p/nNlel/NPg18NGcg0XR2\nY85x+9Oo3Y2Mp7E3P0eqaqheMu+QbFcqWkcua/xheHvTfcteeV5E9LmzqlpQ24A0/9XptpaNONYl\nlQg2OsftBOTaut2I4a/V27Rv0a8AAA9TSURBVHJkOn28QdLvqzjOIs1BNqZflpO0So6FIoCIuBC4\nUNJmEXFDjjEHUPfZjUi6inQS+ijS4QWPSrouIvq9yBhCJTxHGnqqq9nGbtlPkX4mWeXsulnM1Edf\nJH0sIn6caayrgR0bvQOUzi78VUS8s/+v7EgsK5IWEbP1MZD0EAtf4TT/x6jr7Mg3kKoKVouIDapF\nrJ0j4puZ46j17MYqhlsj4i1KrTXXjIhDc1YiNcVR+3NE6cCCr5J2iwJcDnwzIp7t+6s6Eke2bpul\nLCb2KVeSrqxG2pLa8GJ1XzZVyc90qisYSXOA/XPU7EbEhE6PsZh+Qpqj/jFARNwu6edA1kQdESX0\npR4l6TWkTRZfqTGO2p8jVUIu4bCCk0ileY39FfuQnrtD3m2z+ESd2SnATVVXLEgNVhY5J67DTgI+\nGRHXAFRNoqaTTn4ebpaPiJta5kSzLbI2lwdK2i0izm567IiI+HKuWEjnWF5K6hZ3s6S1SU2zcqvt\nOaLeh1ksoobeQOtERPOO3cOrEtchV/zUR25Kp0e8o7p5dUTcmnn8RVav1eZorOFA0iWkbexnV42q\ndgUOiIjtM42/4Ofe+jsYrr8TWLCFvtFlMttzRNJs4GFSGe+N9C5A6Ej98gDx3ECqQrq2ur0FcExE\nbDbUY/mKelHLA09FxHRJXTk3WFR+L+nHpP+MQdqqe1X1ByT7cUM1+xTpRJH1JP2NdH7hXhnHVx8f\nt7vd2UAKma8HiIgZkh6mOidQ0vgcO2dJW/e3JdX5fxj4FXBGRNyVYex2Pg6cogzdNn1F3aTq+dFN\n2nDyBqWz4c6OiFyF/I066r5EZDhoV9I6wKxIJ1a8izTtckpEPNnpsZtiWFC/XC0ejci5sFrFUMwV\ndVWR83ngx41XXJLujEwH/TbFsTPpKKzXAo8C44E/5qxtr+J4GSlhHw0cHhEn5By/JZaOd9v0FXVv\nHyDVRt4CEBF/r1a1s8lZ8tOPc4HuqgHPNFI/g5+Ttgxn0Vy/nHs1v8lGkp4iXS2NrT6muj2m7y/r\niFrn65t8g1Q3fEVVhbIVsHeuwasEvSMpSU9gYbfJ7KpYdqniGNX43UTE14d6LCfq3l6MiJDU6AU9\nLncAOUt++vGvSCd+fwA4PiKOV3WQQWa11i9H5m5sA3iseqXT+L+5K6lPeG4vRcTjSqfcjIiI30n6\nXo6BJZ1C2lPxa9JV9J05xu3HhcAcUg13R3ukO1H3dlY1P7yypI8C+5NKxHLKVvLTj5ck7QlMZuHO\nwNEZx2/YvXr/qab7Ashaz12IdvP12a5kmzyp1F70auB0SY/S9Ee0w/auxjoEOLjp1UWjzj/3mZ5r\nRMR2OQbyHHULSdsC7yb98i+NiMszj1/CAbvrkxZKboiIMyRNBD4UEUflisHaq2u+vmX850jbuPcC\nVgJOr6OJWN0kTSO94ryj42M5USfVlvUr6p4jzlnyM0AcY4HxEfGnnOO2xLA88NkqjimSXk9a6L24\nrphyK6EPTVMsRTxH6ibpTlJb01HA60n9eV6ggy2JPfVRiYj5kv4laaXM88Gtmkt+IDVGmpwzAEk7\nAceQeo1MlDSJNE+ee0PBdNL8X+MQ2b8BZwPDJlFT0EnjBT1H6rY6kO0VLjhRt3oGuEPS5fRevDo4\nYwxPRUSvA3arqYecDgPeRjoajYiYWe2Ey22diNi9mi8nIuZKbVq3LcMi4vDqSvbgiDi27ngo4zlS\ntwcj8yEaTtS9nUf9zeDPBTZuqcnM2Swf0sr+nJacmP2UZ+DFagqmUemwDh1eXS9RdSW7J1BCoi7h\nOVK3V/U3JdWJ6Sgn6iYRkbuvxwJa2Cx/JfU++mlF8tfs3iXpw8DIal74YNLZdLkdBvwGWFPS6aSD\nJfatIY4SXCfpBBYtVcy6U7XO50hD9fw4CngVaV44d9XHSNJ5jdle3XkxEVpPel5EjlaSkt5HanCz\nMwt7/UJqln9mRGRLlNUi3ldoqn4BvhERz/f7hZ2JZVXSBgsBf4iIx3LHUII+dqxm2alajf8+Ujna\nD6rbNwJd1cNTI+KcHHFUY98H7BQR9+Qas2X87H1enKih+aTnRr3uqdX7vUlPhmwtFVVOs/zaSbqI\ntCPylzXuTjRA0nXAHhHxcHV7JrANMA6YHhHb5IwlZ1uHNuNnP/bLUx8sPF1b0rYtv4AvSLqFvL1v\nP6B0uvFzpJf9GwKfiYjTcgWg1BP7y1RbYxv353hl0eIY0qaXIyXdDJwJXFzHlX0JJO1Imh5bMBXW\nie3KfViukaQr11a104/n2sHbNCXYI+kXwAX0Pq4u19x5tj9KDU7UvUnSFhFxXXVjc9qfz9ZJ746I\nqdX27YdIOxKvBrIlatLxZ58H7qCeRURgQdvK31dVD1uTzks8iTRvP6xI+hGps+NWwInAruQ9AusV\nzTci4sCmm13k0Xx+5lzS1FxDtlPhc7UwaOZE3dsBwElNbQv/SdpGnlNjq/aOpM59rdUXOcyOiH6b\ntOdSVX3sRLqy3pj8BzmUYvOI2FDp+K3DJX0HuCTj+DdK+mhE9GqpIOljZPqDERH7VWMuuJhqiqO2\nqZAcPEfdRmOzSR1F/ZKOJC0qPkeqZV6Z9HJ/04wxbEPqTnYl9by0bMRxFuln8BtStcPvI6K2K/w6\nSboxIjaV9AfSq6zHgbsi4nWZxn8VC6caGpUmbwVeBrw/Ih7JEUcVyyKLeXUs8OXkK2r63qbb1LYw\n2zbdiPiipG8Dc6r62WeB9+Uav7IfsB7p6r6RGLO9tGzyU2DPiJifedwSXSxpZVL/5VtIv48Tcw0e\nEY8Cm0vamjRPDulQ29/mikHSZqRdql0tz9kVSSVzyywn6qT2bbqSto6I3zbXULdMeeRMkptExLoZ\nx+tF1VmFEXGppN1I28Ybj+U+q7AIEfGN6sNzJV0MjKnjFV+VmLMl5xbLkeqXR9H7OfsUac5+meWp\nj0JIOjwiDpU0vc3DERHZ5sqrGI6OiLtzjdkyfjEnq5SkWtyeQO9KnFNqC6gmktaKiL9IWj4i5tYd\nTw6+ombhFZyk42mz8SVHH4MqSY8ALomIszo93gDeDsyU9CAd7grWh2LOKiyFpFOBdYCZQGMqKEin\ngg83r1U6+PjlwHhJGwEfi4hP1hxXxzhRJ40dTj11BhFNx0/VGQeQpRl6P6KPj9vdHi66gfXDL4EB\nvge8h2oHb0TcJumd/X/J0s2JGoiIi6r3JZR+1Xr8VDVWYwPQq8jfZwTKOquwFHeSTuGu4/it4kTE\nwy1rOMv0grMTNSCp35rhzH2Yaz9+SoueNL0W6VVHlpOmo6yzCmtVbaMP0uLZ3ZJuonfJZO4e4SV4\nuJqvD0mjSUdz1dL3Ixcn6mQz4GHgDOBGapwHjYjcvafbqfWkaevlmLoDKNDHgeNIDfz/Tmoa9ql+\nv2Ip56oPFhwxtC1pk8eGwK+AMyLirpriqXV1X1JPRHRLug14SzV3fltEbJQrBkskvQ5Yrc1OvC2B\nf0TE/fVEZjnl7mNRpIiYHxG/iYjJpCvJ+4CrJB04wJcOuWp1/xhgS2CT6q07cxiNk6avIZ00fRz5\nTpq23r5HqhNuNad6bNiRtLakiyTNlvSopAtVzwlE2fiKuiLpZaT+GnuSrmZ/CZwUEX/LHMc91Ly6\nX/Wjfp40BbQ3aefX6XU0oxnuJN0cEZv08dgdEfHm3DHVrdpG/wPSVCXAHsBBOdss5OZEDUg6BdgA\n+DWpSf+dNcZyNul8vOyr+5KeZtHyt8Z8/fPA/cBXIuLKrIENY5LujYjX9/HYfbl6fZSkaky1Yct9\ny/TUnBM1IOlfLHxp3/wDyXbET8vq/iRSR7JiVverefwNSFfWG9QZy3Ai6Qzgt2261n0E2DYidm//\nlcseSatUH36B1NnyTNJzZnfgFRHxpbpi6zQn6kJI+o/+Hq96M9dO0sci4sd1xzFcSFoNOB94EZhR\n3d1N6nvxgYj4v7piy63aKRu0r8qKiFhm56mdqAvh1X3rT1Ui2Xglc1fOrnVWPyfqQlQd0b4UEXe0\n3P9m4IiI2Kn9V5oNP5I2ANan97Fky2zfE294KcdqrUkaICLukDQhfzhmZZJ0KPAuUqL+NbA9cC3L\ncIMq11GXY+V+HhubLQqz8u1KOmD2/6rjuTYCVqo3pM5yoi5Hj6SPtt5Zre7PaPP5ZsPVc9WRbPMk\nrUjqR7NmzTF1lKc+yvFp4HxJe9Fmdb+2qMzK01MdS/YT0nPlGeCGekPqLC8mFsar+2aDV63frBgR\nt9ccSkc5UZvZUkXSlcB3IuLXTfdNi4gpNYbVUZ6jNrOlzUTgC1X1R0PuxmVZOVGb2dLmSVLVx2pV\nF71luuIDnKjNbOmjiJhXHWZ7LqmG+lU1x9RRrvows6XNjxofRMTJku7AJ7yYmdVP0ooR8VRTF71e\nluV+6U7UZrZUkHRxRLy3jy567p5nZmb18Ry1mS0VJG3c3+MRcUuuWHLzFbWZLRUk/a6fhyMits4W\nTGZO1GZmhXMdtZktFSRNbfp4t5bHjsgfUT5O1Ga2tNij6ePWg2y3yxlIbk7UZra0UB8ft7u9THGi\nNrOlRfTxcbvbyxQvJprZUkHSfOBZ0tXzWGBu4yFgTESMriu2TnOiNjMrnKc+zMwK50RtZlY4J2oz\ns8I5UdtSQdJ8STMl3SXpNkn/LWlI/v9KOlnSg9X3/2PzEU+SrpL0J0m3V4+dUJ2AbZaNE7UtLZ6L\niEkR8SZgW2B74NABvmZxfD4iJgGTgMmSJjY9tldEbAhsCLwAXDiE45oNyInaljoR8SgwBThQyUhJ\nR0u6ubry/RiApHdJurjxddXV8L4DfPsx1ftn24z7IjAVGC9poyH5x5gNghO1LZUi4gFgJOmsvAOA\nORGxCbAJ8NGWK+LBOFrSTGAWcGb1x6DduPOB24D1/u3gzRaTE7UtC94N/FeVaG8EVgVev5jfozH1\n8WpgG0mb9/O5y/R2ZSuPDw6wpZKktYH5wKOkxHlQRFza8jlb0vtiZAwDiIhnJF0FbAlc32bckcCb\ngXv+7eDNFpOvqG2pI6mLdBL1CZG21l4KfELS6OrxN0gaB/wFWF/Sy6pKjW0G8b1HAZsC97d5bDTw\nLeDhiLh9yP5BZgPwFbUtLcZWUxujgXnAqcB3q8dOBCYAt0gSMBt4f0Q8LOks4E7gQeDWfr7/0ZL+\nB1gOuBI4r+mx0yW9ALwMuAJ435D9q8wGwb0+zMwK56kPM7PCOVGbmRXOidrMrHBO1GZmhXOiNjMr\nnBO1mVnhnKjNzAr3/wFE90/If/19AQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "1pJqLrCN45o0", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"### Tardões da Família com Significância Estatística\n", | |
"Aqueles que em média deram bom dia mais tarde e pelo menos 10 vezes:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "L2kLGu3TznRO", | |
"colab_type": "code", | |
"outputId": "087b1db6-0e45-4bb5-c532-2b071803ba09", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 373 | |
} | |
}, | |
"source": [ | |
"df[df['Deu BD'].isin(bomdiadores)].groupby('Deu BD').mean().sort_values('Hora Frac', ascending=False).head(10)" | |
], | |
"execution_count": 183, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Hora Frac</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Deu BD</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>Sarah Behel</th>\n", | |
" <td>10.562821</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Merrill Williams</th>\n", | |
" <td>10.076905</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Alexander Thomas</th>\n", | |
" <td>9.236797</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Patrick Lopez</th>\n", | |
" <td>9.082609</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Charles Welch</th>\n", | |
" <td>9.071171</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Albert Horn</th>\n", | |
" <td>8.977778</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Kim Rogers</th>\n", | |
" <td>8.964286</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Betsy Ledezma</th>\n", | |
" <td>8.925505</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Preston Greer</th>\n", | |
" <td>8.913095</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Peter Brown</th>\n", | |
" <td>8.894042</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Hora Frac\n", | |
"Deu BD \n", | |
"Sarah Behel 10.562821\n", | |
"Merrill Williams 10.076905\n", | |
"Alexander Thomas 9.236797\n", | |
"Patrick Lopez 9.082609\n", | |
"Charles Welch 9.071171\n", | |
"Albert Horn 8.977778\n", | |
"Kim Rogers 8.964286\n", | |
"Betsy Ledezma 8.925505\n", | |
"Preston Greer 8.913095\n", | |
"Peter Brown 8.894042" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 183 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "0C9cOF35CN2r", | |
"colab_type": "code", | |
"outputId": "b893bf44-3528-4f75-a73f-87cb27926a55", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 380 | |
} | |
}, | |
"source": [ | |
"df[df['Deu BD'].isin(bomdiadores)].groupby('Deu BD').mean().sort_values('Hora Frac', ascending=False).head(10).plot.bar()" | |
], | |
"execution_count": 184, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fb7d6e313c8>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 184 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAFaCAYAAAAHLgZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZhcVZnH8e8vCZCFHWJEQYOIIGoS\nMMiuAuLggMEFxSgYkE1ZXTPADAOjziii4zCAaADZZABZBEFFFtnBQAeCJCyyBYiChMWAhBAC7/xx\nbiWVprrTSVede2/y+zxPP911q7rOm07VW/ee5T2KCMzMrH4GlB2AmZktHSdwM7OacgI3M6spJ3Az\ns5pyAjczqykncDOzmhqUs7G11147Ro4cmbNJM7PamzJlyjMRMbz78awJfOTIkXR1deVs0sys9iQ9\n1uq4u1DMzGrKCdzMrKacwM3MaiprH7iZLVteffVVZs6cydy5c8sOZZkwePBg1l13XVZYYYU+Pd4J\n3MyW2syZM1lllVUYOXIkksoOp9YigmeffZaZM2ey/vrr9+l33IViZktt7ty5rLXWWk7ebSCJtdZa\na4muZpzAzaxfnLzbZ0n/lk7gZlZrK6+88iK3zzzzTA455JC2tzNjxgyGDBnCmDFjFnzNmzev7e0s\niUr1gY884jf9fo4Z39+lDZGY2dJox3u4WY738/z58xk0qG+pcIMNNmDq1Kltea528Bm4mS2zZsyY\nwQ477MCoUaPYcccdefzxxwHYe++9+fKXv8wWW2zBxIkTuf3229lqq63YdNNN2XrrrXnggQf63Max\nxx7LXnvtxTbbbMNee+3FjBkz2G677dhss83YbLPNuPXWWxc89rjjjuN973sfo0eP5ogjjuj3v69S\nZ+BmZkvq5ZdfZsyYMQtuP/fcc4wbNw6AQw89lAkTJjBhwgR+/vOfc9hhh3HppZcCaQbNrbfeysCB\nA3nhhRe46aabGDRoENdccw1HHXUUF1988Rvaevjhhxe0tc0223DyyScDcO+993LzzTczZMgQ5syZ\nw9VXX83gwYN58MEHGT9+PF1dXfzud7/jsssuY/LkyQwdOpTnnnuu3/92J3Azq7UhQ4Ys0q1x5pln\nLqi5dNttt3HJJZcAsNdeezFx4sQFj/vMZz7DwIEDAZg9ezYTJkzgwQcfRBKvvvpqy7Z66kIZN24c\nQ4YMAdLc+EMOOYSpU6cycOBA/vznPwNwzTXXsM8++zB06FAA1lxzzf7+092FYmbLp2HDhi34+eij\nj2b77bdn2rRpXH755Uu8MKn5uX784x8zYsQI7r77brq6ujo60OkEbmbLrK233przzz8fgHPPPZft\nttuu5eNmz57NW9/6ViCdwffH7NmzWWeddRgwYADnnHMOr732GgA77bQTZ5xxBnPmzAFoSxeKE7iZ\nLbNOPPFEzjjjDEaNGsU555zDCSec0PJxEydO5Mgjj2TTTTdl/vz5/WrzoIMO4qyzzmL06NHcf//9\nC87Od955Z8aNG8fYsWMZM2YMP/zhD/vVDoAiot9P0ldjx46N3uqBexqhWb3cd999vPvd7y47jGVK\nq7+ppCkRMbb7Yxd7Bi7p55KeljSt6diakq6W9GDxfY22RG5mZn3Wly6UM4Gdux07Arg2IjYEri1u\nm5lZRoudRhgRN0oa2e3wbsCHi5/PAq4H/qWNcZWqv1057sYxsxyWdhBzREQ8Wfz8FDCipwdKOkBS\nl6SuWbNmLWVzZlZVOcfRlnVL+rfs9yyUSC322GpETIqIsRExdvjwN2yqbGY1NnjwYJ599lkn8TZo\n1AMfPHhwn39naVdi/k3SOhHxpKR1gKeX8nnMrMbWXXddZs6cia+u26OxI09fLW0C/zUwAfh+8f2y\npXweM6uxFVZYoc+7x1j79WUa4XnAbcBGkmZK2peUuHeS9CDwkeK2mZll1JdZKON7uGvHNsdiZmZL\nwEvpzcxqygnczKymnMDNzGrKCdzMrKacwM3MasoJ3MysppzAzcxqygnczKymnMDNzGpqaWuhWId5\nezkzWxyfgZuZ1ZQTuJlZTbkLxXrl7eXMqssJ3CrP4wFmrTmBm/WRr0asapzAzWqkKlcj/jCrBidw\nM6slf5h5FoqZWW05gZuZ1ZQTuJlZTTmBm5nVlBO4mVlNOYGbmdWUE7iZWU05gZuZ1ZQTuJlZTTmB\nm5nVlBO4mVlNOYGbmdWUE7iZWU31K4FL+pqk6ZKmSTpP0uB2BWZmZr1b6gQu6a3AYcDYiHgvMBD4\nXLsCMzOz3vW3C2UQMETSIGAo8Nf+h2RmZn2x1Ak8Iv4C/BB4HHgSmB0RV7UrMDMz611/ulDWAHYD\n1gfeAgyTtGeLxx0gqUtS16xZs5Y+UjMzW0R/ulA+AjwaEbMi4lXgEmDr7g+KiEkRMTYixg4fPrwf\nzZmZWbP+JPDHgS0lDZUkYEfgvvaEZWZmi9OfPvDJwEXAncA9xXNNalNcZma2GP3alT4ijgGOaVMs\nZma2BLwS08ysppzAzcxqygnczKymnMDNzGrKCdzMrKacwM3MasoJ3MysppzAzcxqygnczKymnMDN\nzGrKCdzMrKacwM3MasoJ3MysppzAzcxqygnczKymnMDNzGrKCdzMrKacwM3MasoJ3MysppzAzcxq\nygnczKymnMDNzGrKCdzMrKacwM3MasoJ3MysppzAzcxqygnczKymnMDNzGrKCdzMrKacwM3Maqpf\nCVzS6pIuknS/pPskbdWuwMzMrHeD+vn7JwBXRsTuklYEhrYhJjMz64OlTuCSVgM+COwNEBHzgHnt\nCcvMzBanP10o6wOzgDMk3SXpNEnD2hSXmZktRn8S+CBgM+CUiNgUeAk4ovuDJB0gqUtS16xZs/rR\nnJmZNetPAp8JzIyIycXti0gJfRERMSkixkbE2OHDh/ejOTMza7bUCTwingKekLRRcWhH4N62RGVm\nZovV31kohwLnFjNQHgH26X9IZmbWF/1K4BExFRjbpljMzGwJeCWmmVlNOYGbmdWUE7iZWU05gZuZ\n1ZQTuJlZTTmBm5nVlBO4mVlNOYGbmdWUE7iZWU05gZuZ1ZQTuJlZTTmBm5nVlBO4mVlNOYGbmdWU\nE7iZWU05gZuZ1ZQTuJlZTTmBm5nVlBO4mVlNOYGbmdWUE7iZWU05gZuZ1ZQTuJlZTTmBm5nVlBO4\nmVlNOYGbmdWUE7iZWU05gZuZ1ZQTuJlZTTmBm5nVVL8TuKSBku6SdEU7AjIzs75pxxn44cB9bXge\nMzNbAv1K4JLWBXYBTmtPOGZm1lf9PQP/H2Ai8HobYjEzsyWw1Alc0q7A0xExZTGPO0BSl6SuWbNm\nLW1zZmbWTX/OwLcBxkmaAZwP7CDpF90fFBGTImJsRIwdPnx4P5ozM7NmS53AI+LIiFg3IkYCnwP+\nEBF7ti0yMzPrleeBm5nV1KB2PElEXA9c347nMjOzvvEZuJlZTTmBm5nVlBO4mVlNOYGbmdWUE7iZ\nWU05gZuZ1ZQTuJlZTTmBm5nVlBO4mVlNOYGbmdWUE7iZWU05gZuZ1ZQTuJlZTTmBm5nVlBO4mVlN\nOYGbmdWUE7iZWU05gZuZ1ZQTuJlZTTmBm5nVlBO4mVlNOYGbmdWUE7iZWU05gZuZ1ZQTuJlZTTmB\nm5nVlBO4mVlNOYGbmdWUE7iZWU05gZuZ1dRSJ3BJ60m6TtK9kqZLOrydgZmZWe8G9eN35wPfiIg7\nJa0CTJF0dUTc26bYzMysF0t9Bh4RT0bEncXPLwL3AW9tV2BmZta7tvSBSxoJbApMbsfzmZnZ4vU7\ngUtaGbgY+GpEvNDi/gMkdUnqmjVrVn+bMzOzQr8SuKQVSMn73Ii4pNVjImJSRIyNiLHDhw/vT3Nm\nZtakP7NQBJwO3BcR/92+kMzMrC/6cwa+DbAXsIOkqcXXP7cpLjMzW4ylnkYYETcDamMsZma2BLwS\n08ysppzAzcxqygnczKymnMDNzGrKCdzMrKacwM3MasoJ3MysppzAzcxqygnczKymnMDNzGrKCdzM\nrKacwM3MasoJ3MysppzAzcxqygnczKymnMDNzGrKCdzMrKacwM3MasoJ3MysppzAzcxqygnczKym\nnMDNzGrKCdzMrKacwM3MasoJ3MysppzAzcxqygnczKymnMDNzGrKCdzMrKacwM3MasoJ3MyspvqV\nwCXtLOkBSQ9JOqJdQZmZ2eItdQKXNBA4GfgYsAkwXtIm7QrMzMx6158z8A8AD0XEIxExDzgf2K09\nYZmZ2eIoIpbuF6XdgZ0jYr/i9l7AFhFxSLfHHQAcUNzcCHhg6cMFYG3gmX4+R39VIQaoRhyOYaEq\nxFGFGKAacVQhBmhPHG+PiOHdDw7q55MuVkRMAia16/kkdUXE2HY9X11jqEocjqFacVQhhqrEUYUY\nOh1Hf7pQ/gKs13R73eKYmZll0J8EfgewoaT1Ja0IfA74dXvCMjOzxVnqLpSImC/pEOD3wEDg5xEx\nvW2R9axt3TH9UIUYoBpxOIaFqhBHFWKAasRRhRigg3Es9SCmmZmVyysxzcxqygnczKymnMDNrPaU\nrLf4Ry5bKtsHLulEoMfgIuKwjLFsA0yNiJck7QlsBpwQEY/liqGI43DgDOBF4DRgU+CIiLgqYwyv\nAccDR0bx4pF0Z0RsljGGdwHfAt5O00B8ROyQK4amWLYGRnaL4+yM7Q8DXo6I14u/y8bA7yLi1Vwx\nNMWyBrAhMLhxLCJuzNj+PRHxvlztVUHHF/L0Q1fZATQ5BRgtaTTwDVLyPBv4UOY4vhQRJ0j6J2AN\nYC/gHCBbAgemk67crpK0R0Q8Byhj+wAXAj8FTgVey9z2ApLOATYApjbFEaTXRi43AtsVyfMq0vTe\nPYAvZIwBSfsBh5PWg0wFtgRuA3J+qN4pafOIuCNjm28g6VPAccCbSO8NARERq7a7rcom8Ig4q/m2\npKERMaekcOZHREjaDTgpIk6XtG8JcTQS5T8D50TEdEm5k+f8iJgoaQ/gJklfpJcrpQ7GcErmNlsZ\nC2wS5V7GKiLmFK/Hn0TEDyRNLSGOw4HNgT9GxPaSNgb+K3MMWwBfkPQY8BILE+eozHH8APh4RNzX\n6YYqm8AbJG0FnA6sDLytOAs+MCIOyhjGi5KOBPYEPihpALBCxvYbpki6ClgfOFLSKsDrmWMQQERc\nIGk68H/A27I0LK1Z/Hi5pIOAXwGvNO4vrgZymga8GXgyc7vNVLxHvgA0TioGlhDH3IiYKwlJK0XE\n/ZI2yhzDP2Vuryd/y5G8oQYJHPgf0n/MrwEi4m5JH8wcwx7A54F9I+IpSW8j9QPnti8wBnikOOta\nC9gncwz7NX6IiGmStiNfFcoppLP9xlXHt5ruC+AdmeJoWBu4V9LtLPpBMi5jDIcDRwK/Kq7I3gFc\nl7H9hpmSVgcuBa6W9DyQdYwoIh6TtC2wYUScIWk46cQvty5JF5D+Fs2vi0va3VBlBzEbJE2OiC0k\n3RURmxbH7o6I0SXEsiqLDlblPuOrwkDRUNI4wNsiYn9JGwIbRcQVuWKoCkktx0Ai4oZM7Q8EjouI\nb+Zor6+Kv8tqwJVFqelc7R5D6tbaKCLeJektwIURsU2uGIo4zmhxOCLiS+1uqw5n4E8UI/0haQXS\nGUeWy5MGSQcC/wHMZWF/b/YzvooMFJ1BOhPeqrj9F9KgYrYELulg4NyI+Htxew1gfET8JGMMA4Fj\nI2L7XG12FxGvFWeclVD8P6xHmiX1IvBe4M6MIXySNDPrToCI+GvRzZjbVyJibo6G6pDAvwycALyV\nlCyuAg7OHMM3gfdGRNm1haswULRBROwhaTxA0ZWTeyB1/4g4uXEjIp6XtD+QLYEXyfN1SatFxOxc\n7bZwl6Rfkz5EX2oc7MTlem8kfQfYG3iEheMyQd6Ti3nFZIPG9NZhGdtuNk3S34Cbiq+bO/UaqXwC\nL5Jm1ilRLTwMlDUDplkVBormSRpCcSUiaQOa+vkyGShJTfPQBwIrZo4B4B/APZKuZtHkmW2NAqkr\n7VkWTZQBZE3gwGdJH+7Zukxa+KWknwGrFx/oXyJNNc0qIt5ZjJNtB+wCnCzp7xExpt1tVT6BFwMR\n+/PGxRJt70/qxZHArZIms+igRM43KlRgoAg4BrgSWE/SucA2pDOvnK4ELijerAAHFsdyu4T8iXIR\nEZF7ELsn04DVgafLCiAifihpJ+AF0u5f/x4RV+eOQ9K6pPfFdsBo0tqJmzvSVg0GMW8lXYZMoWnR\nRkRcnDGG20n/AffQNG2v+1z1nMoaKCraXovU/y5Sd07WrqViGueBwI7FoauB0yIi+6Keohb+u4qb\nD+ReAVmsvjwFGBER75U0ChgXEd/NHMdY4DJSIi9rRg6S3k6ahXJNMeA+MCJezBzD66QFVf8VEZd1\ntK0aJPCpnbj0WMIYFsyAKVvTQFHz1UjOgaLGSrNtSZfqN0fEr3K2XxWSPgycBcwgfZitB0zIPCvo\nBtJ0yp81zdKaFhHvzRVD0eZ04Ge88SQny4ycIob9SfvvrhkRGxQzpH4aETsu5lfbHcdo0vvjg6Q1\nEg8CN0TE6e1uq/JdKMAVkv45In5bYgy/U9qc+XJKXDhShYEiST8B3gmcVxw6UNJHIqLjA8uS7qH3\n+ji5V9z9CPhoRDwAC86GzwPenzGGoRFxe7dx5PkZ22+YExH/W0K7zQ4GPgBMBoiIByW9KXcQxVqV\nh0ljZ9uRFgB+iLQgsa0qm8AlvcjCRRtHSZoHzKODdQV6Mb74fmTTsTIWjlRhoGgH4N1NA4hnkfr4\nctg1Uzt9tUIjeQNExJ+Lqa45PVMMJDf+P3annJWhN0n6HmnBXfNJTs6rw1ciYl7jw0zSIPKXeUBS\nF7AS0Oj+/WB0qPBdZRN4RJQxf7OliFi/7BgKpQ8UAQ+RLgsbL8j1imMd1/wm6NbXOYRyXstdkk4D\nflHc/gL5i7AdTNqya2NJfwEeJZ3x5dboYtyy6VjuaYQ3SDoKGFIMZh5EumrO7WMRMStHQ3XoAxfp\njbF+RHxHqebvOhFxe+Y43gtswqIrIHNWnavEQFHR57o50Pj7b05KWrNzxVKhvs6VSAm0sZjmJlJB\nqdzTKhtzngfkHrCrkmJwe1/go6Qr9d+TBrezJjlJq5FmazVKftwAfLsTc8HrkMBPIfX37hAR7y4G\n8a6KiM0zxnAM8GFSAv8t8DHS4N3uuWIo4qjCQFGvJXRzxKJUbe8DwOSmgbvlrhY0gKSvtzg8G5gS\nEdmqEqrkOvHFWoCzI6LsNSNIuph0ktWYpbYXMDoiPtXutirbhdJki4jYTNJdsGDVXe5FG7uT5nPe\nFRH7SBrBwsvmnEofKIqIG4p/f+MD9PaIyN2lU2pfZ8UGU8cWX42ugl2BPwFflnRhRPwgUxyl1okv\nVsa+XdKKJY8RQRqn+nTT7f9Qh0r81iGBv1p8ujY+1YeTv4RqY8eT+UoFrZ4m9f3mVvpAkaTPks60\nrie9QU+U9K2IuChXDJTf19kYTBXwG1J99rKsC2wWEf+ABVeLvyFdvk8h1abOoQp14h8BbilKCzSv\njP3vzHG8LGnbiLgZFuzo9XInGqpDAv9fUt3nN0n6T9LZ8L9ljqGrWAF5KulN8Q9SEancqjBQ9K/A\n5o2z7uID9RogZwI/gtTXeQ9pQc9vSbskZdFtMPWVTs0w6KM3sWgpg1dJi3pelpSzL760OvFNGlP3\nBgBlToL4MnB20RcO8DwwoRMNVb4PHECpaNOOpBfJtZGpWHoPsYwEVo2IP5UVQ5m69zUXA0d35+h/\nlvQJ4NYSumx6lLOft4f2jyZV4buM9P7YlXSF9iNgUq4+YUnvj4gpTbdXA3bLPdBftuL9sHtE/LK4\nWiciXuhYe3VI4LCgDvUmwGPZpuhIGxcFo1q+QUtYAZltdLuXGI4HRrFwIc8ewD0RMTFD2xeRytjO\nIc2xvYWU0Kd1uu1ucTS/Hs4lbfaxoL+3hNfFWFLtDYBbIiL7frIqsU68UknddzQ+LIrXSWP3pu9G\nxB86HUO3eLoiYmyWtqqawCWNI3WfPEfqMjkZ+BupqNW/5KhDIunU4sXYaoeTiMy7oOcc3V5MHI2l\n9AA35V5KX1wFbV18bUW6VL8jIrL0Rffwemgo43UxmvShHqT/j7tztl/EcAGpe/GLkWqyDCV9uHa8\nDIaka4FDI+Le4vY9pBXLw4CjImLnTsfQLZ7vA88AF7BoX3zbV25XOYHfDXyGVLDpOmBURDxSLI29\ndjmdMvaGujCtjuUm6ZbIv+vJxqSzzq1JYwJPR4mbK5RF0uGkap0Xk64CPknqOjkxcxxdETFWJeyc\nJemO5mnFki5pnNSU9Np8tMXhiIi2r9yu8iDm6xHxZ0h/kIh4BCAinpaUpdZDcabZo8hcNJ+Mo9tL\nKNemxkeRzriHAw8AfwROAg6IEioRVsS+pKm2LwFIOo40wJ41gVNunfjVm290uyIdkSmG5vazrdyu\ncgIfUCzaGQC8Xvzc6GcckCmGj/dyXxlF85tHt0XqXto7cwyt5LqM+yLpkvRyUh/45Jz9/xUlmsos\nFz/n3iEJyq0Tf7+kXSLiN80HJe1K+qDPRqnEw0sR8YykLUldjQ9FxKUdaa/CXSgzSPO9W70YO3I5\nUhc5RrdbtNnT1YhIy9iHZ4pjTRb2f29J2nX8blJ/a6vNZJdpxUrMCaSptgCfAM6KiB+XEEspdeIl\nvZM09/1WFu7B+X7Sa2TXxpV8hjiOJn1oBXA+8BHSeoktSDO1vtr2NquawKugh2XKC+ReIKBUe+PT\nvHF3om9naLvX5BiZd4YpVl++nzR4dyCpVs7AzDFcG93qr7Q6liGOzVh0UPmuzG33KNeMnOK98QXg\nPcWh6cD/RabNhYsY7gXGAEOBx4E3R9ozdhAwNTpQo73KXShVUJmKiIXLKOpckHkfytwJupViZtLW\npMvz95DepLeQpq/dmjGOwaQ36drduvZWJW2+nVWRJO8sYltd0r9GxH9mav5HxffBpCX9d5P+HqNI\nRc62yhFEpAJiP8/RVi/mFsv450l6OCLmAETEfKVy2G3nBN6LiPiPsmPoZt3cU6IqZm9Swp5IKtZU\nVs2LA4GvAm8hfZg2EvgLpEHVjlOqynl0EcOlpHn53yZNLT2vl19tq8bMH0mXkJb031Pcfi9wbK44\nKmL1oqtRwKpN3Y4izaZrO3eh9ELSxIj4gaQTaTFQF5k3NZY0CTix8Sax8hT1eY6KiO+U1P51pIVc\ntwE7F19Tga9FxFMlxDM9It6zuGPLsjK6GWuRwIs3ywgW7fd9PEO7H4+IyyW1rGOQYzFREUej+t0g\nYENS0Z5XYMHuRNmq30lSdHvRSFopSqiBXTaVuFdq9znWkmaSVkHmLvTWaP880gyh5s0tVo6I8T3/\nlvVX5btQJB1KmqL0NxbdBzJH0nqiSFil7T5f+BRpO7kqOB34UuOGpJVJffNZB+4q4lpJnwYu6f6h\nlkO3/vdngdUkNYpKZd2vFdgH+ApweHH7RuCUnAEU6yKOBd5Oym2NE5xldsZa5c/AJT1EWqjwbAlt\nd5H2vZzCwtobt0XmXU/KLpjUTNK3gbUj4qAigfwGOLWsKXxFDOtFCcXFlPZtHUaae/0y5NuvtYrT\nbIuFPG+Lpn1CM7d/P/A10vt1wdz4MnJHLnVI4NcBO0VEGTttN4r0fICFc483B54iFQ06KFMMpV2q\ntyLpB6QZF+8Hvh8RF2du/3pgHOksawqpPvstEdHrtE/rnGKG0PHAihGxvqQxpEJrObf7mxwRW+Rq\nr4cYBgBbRkSWWVGVTeBNc7DfA2xEOtNr3sQg9xzsYaRFCtuQVgQOyHWWU/Rv9vjvzfG36LaQR6QZ\nELeTVt9lLSvQ+ECTtB/p7PsYSX/KORZQxFGJ/VqrQNIUUl3666Okbe6KIlIDSSukS9nwpIgj2wlX\nlfvAG3OwHy++Viy+spH0edJZ9xjSC+IOYDKwbeaR/oGkFYdlLJFu6F5W4C5gheJ47rICgyStA3yW\ntMFEWX5CsV8r8B3SRh8ns3C7ueXJqxExu+iCb8h9dtg4+24u5Zp7wxPIODZS2TPwKij6OB8Afgrc\nmGtJbos4KtMHXgWSPkO6ArglIr4i6R3A8bHoPoQ54rgziv1aI3MFvqqRdDpwLWm3pE8DhwErRMSX\nSw2sBDnHRiqfwJW27JpI6koZ3DgeGWouF9MXR7Ow/3sj4EnS3NvbIlOh+Cr1gUs6Czg8Iv5e3F4D\n+FFEfKn331z2SJpMel3cUSTy4cBVuf+vGgO5LDrNNne3wVDS1dBHi0O/B76Tc3qpKrDhSW51SOBX\nkQqjf5NUjW8CMCsi/qWEWEaQapR/lYy1NyStWcK0sJZafZjk/oCR9C7SFLURkTYPGAWMi4jv5oqh\niOMLpB2J3g+cSbFfa0RcmDGG75BWqD7Mwi6LyHGCsziSfhgR38zYXlU2PMk2NlKHBD4lIt7fPEil\nbgXcO9j2KBaefW9N6oO/lXQGXsrWVWVT2mjjwxHxfHF7TeCGzINVNwDfAn7W1HUxrRPFgvoQS2O/\nVoA/ROb9WiU9ALyvxLICPZL0eERk29hYFdnwRNIpFGMjEfHu4grpqk7krCoPYja8Wnx/UtIuwF9Z\nuN9dp50J3Az8jnRm1fHVnzXwI+A2SReS+vZ2B3IVTmoYGhG3dxswK2WaKamo1UDS2e+QEtqfRtrQ\noDIbPTfJPehelQ1PtmiMjQBExPOSOjIBow4J/LtF39Y3SLuMrEqarN9xVRo4LPrjr4mStw2LiLOL\nBU6NS/RPRbEXYUbPKO340tj9ZXfS2ERWkv6d1KXW2M7sDEkXZu7K+R5wl6RpLDp1Lsv86+IKrOVd\n5E/gzRueADxP6nLN7dXi/dp4fQ5n4Srytqp0F0rxRzgsSihOX0VKm7d+qoxBGUmrRsQLPb1hc/bR\nF7NOJpG6tZ4HHgX2jIgZuWIo4niA1Mc6t7g9hFT3eaOMMUwHfgbcQ1OSiIgbMrX/KClRlb4iVNL6\nEfGomjY8aRzLFUMRR2NsZDNSf/zuwNER8cu2t1XlBA4g6faI+EDZcVSBpMuATYGrWXS3645XRZR0\nRUTs2vSGXXAX5S3dHkZaUJW1tEFT+9cBn2yakbM6ae5vtgHEXONBddBqum1jDK2EWBpjIyJtwt6R\nsZE6dKHcIukk0kyU5qSVdcxNA6oAAA0NSURBVJpURVxC/n04ASiSt4APlTUWoB52SGr0hedanauF\n5YVnA9MlXV3c3om0OjWnmyR9D/g1Ja4+LFORLN9DKubVPONkVZqmHmeM55yI2Au4v8WxtqpDAm+M\nIDdvG5ZldZWky+llNVnOOg9Fe2epxIJBERGSfgNkm3HSTVV2SGrMPprCwr0oIe1/mFtj+uaWTcfK\nWH1Ypo2AXUmDuc0rhl8E9i8hnu510QeSppq2XeW7UMok6UO93Z+rn7FB0seBH1JuwaCzgJMi4o5c\nbXZr3+Mi1pKkrSLithLbPxI4ijQbaQ4LxwXmAZMi4si2t1mHBF5MH+y+ErPjG/lWTQ8Fg7LOf1Yq\n2flO4DFSl1YZm0qUOi6ihRtsvOEuMv0tJO0ZEb/oqVspV3dSUzw/An4eEdNzttsthh8A3yVNHbyS\ntGfA1yLiF73+Yvvj+F4nknUrle9CkfRT0lzb7YHTSCO6WfoZe3mjApAzaRVaFQzKvQPLP2Vur5Wy\nx0V2zdROb4YV31t1K5VxVnYfMElpB/YzgPNKmC310YiYKOmTwAzSRig3snCXoFz+VdKeeCUmNFZg\nNn1fGfhdRGyXoe2393Z/RDzW6RiaqQIFg1oNxnRqgKaXGK5rcbj05eOStgXGR8TBGdpaLyKe6OG+\nXSPiik7H0EPbG5F25xlP2gDl1Iho9f/VibanR8R7JJ0GXBQRV6qE4mJeibmoxkqqOZLeQto6ap0c\nDedO0H1wKKlg0Cukncd/TypjmlO2AZqelL2YqZmkTYHPkxb0PEq+WUJXS9q5+9x3SfsA/wZkT+DF\na2Hj4usZ4G7g65IOjIjPZQjh8qKL72XgK8UCmrkZ2u3OKzGbXFHMrz0euJN0eXhqjoYl3RwR2yqV\nh2w197njW2c1i4g5pASevQZ28wCNpBcahykGaEqIp7RxEaViWuOLr2dIXTnK/MHydeAqSbtExINF\nXEeSPkx6HXzvBEk/JnUt/QH4r6buguOKBU8dFxFHFP3gsyPiNUlzgN1ytN2NV2K2ImklYHAZKxHL\nVKXpjDkHaHqJoeW4SETsm6n914GbgH0j4qHi2CO5FzNJ2pG0CvMTwH6krf92iaLQWOZY9gF+GREv\ntbhvtRzvWaWStl8nTbM9QNKGwEa5u5N6WInZkSqVlU3gkjYHnohi5xtJXyT1+z4GHJtr6XbxSTo9\nIjbO0V4PMTTOqD4FvJmFgzLjgb9FRJbaME3xrAFsyKJnvzdmbL+0cZGi/U8AnyNtr3clcD5wWkSs\nn6P9brFsR5qLfivw2cay/hLi2IZURuClYgBvM+CEnN2Qki4gzc3/YqQyw0OBWyNzNcIiliwrMYmI\nSn6RukvWLH7+IKkK4adJfb4XZY7lMtKnetl/k66+HOtwDPuR6m48D1xH6m/8Q+YYJhff/wi8BVgJ\neKiE/49hpC6Ly0mzYU4hzYTI0faLwAvF93lF+43bL5Twt/gTKVmNJm23dzCpzHDOGLqK73c1Hbs7\nY/uDSXsFnAQcCAzqdJsD+v0J0DkDY+FZ9h6kifAXR8TRpHnIOa1BWjJ9raRfN74yxwAwTKmQE5CK\n97BwOlkuh5P2fHwsUp/vpsDfM8fQfVxkBmlQN6uIeCki/i8iPg6sS0pcWTYaiYhVImLV4vuKETGs\n6XbWsZnC/EhZbDfSQq+Tyb9ydl6xUrnR97wBTeUFMjiLtB/nPcDHSIvuOqrKg5gDJQ2KiPmkS5ED\nmu7LHffRmdvrydeA6yU9QjrbeTvpkz6nuRExVxKSVoqI+4upY9lERGPmzcWSrqAC4yKR+p0nUcKA\nbkW8WAyi7gl8UNIA0qbXOR1D6tJaT9K5pC6uvTO2v0kUG5sUU347vl6lygn8POAGSc+QLtNvApD0\nTlIRoSyKPvBjowJT1yLNa92QNE0L4P7IuOdgYWZx9nspaSrb86RxiawkbQ2MpHgNSyIizs4dhy2w\nB6k7ad+IeErS20hXSFkorW67nzROtCXpBOfwiHgmVwws3HyGiJjfbcFdR1R2EBNA0pakOd9XRTG6\nXUzhWjkyVltTiXW4W8SySOICSktcxeDqasCVkXFLL0nnABsAU0k7f0Oa1tnxsrrWmqTjots+ta2O\ndTiGeyLj1n4t2n+NhSuDxaI1UaITXVuVTuBVoRLrcHeLo7TEJWkwaceTd5L6+E4vureyk3Qf6XLV\nL96KUOta3Av2sc0UQ6mF1spQ5S6UKimtDnc3YykvcZ1FukS8iTRAswlpQLMM00jTKbNvo2aLkvQV\n4CDgHZL+1HTXKqSpjTltAewpaQYlFVrLzWfgfaQS63A3xXAhqZRqGfs/Lrg8VSpYdHv3M64MMTQW\nNK1CqhN/OyXsA2kLKe0/uQZpb84jmu56MTJus1fE0rJ2UVSvJEbb+Ay8D9RUhxtYXyXU4S6sDdwr\nqYzElX2ApoWOT8uyJVOMC80GxhfFvDaMiDMkra1M+1FWqXsvN5+B94EqUIe7aLNljYvIsLFEGQM0\nLWJ4JzAiIm7pdnxb4MmIeLjTMVhrko4hdfFtFBHvUio8d2FEbJOh7QtYtHvvsYgoq3svK5+B900V\n6nBnSdS9tD2wrLab/A/Qqg7L7OK+j7e4z/L4JGmg/06AiPirpFwLebLPv66KKq/ErJLpkj5PWly0\nodKmtrkHaJC0paQ7JP1D0jxJrzVVBlwejIiIe7ofLI6NzB+ONZlXDK43VkHmXCG8SPdexnZL5wTe\nN4eSSpc26nC/QKp5kNtJpAJWD5K6MPYDTi4hjrKs3st9Q7JFYa38UtLPgNUl7Q9cQ6ayz8BoSS8U\nXy8Coxo/L+snOO4DrxFJXRExtnl+raS7Gv3yyzpJ55EKZ53a7fh+wE4RsUc5kRmApJ2Aj5LGRX4f\nEVeXHNIyzwm8F4srWJV7FoqkG4GPkGpgP0WaB713ZN4yqiySRpBKp84jlQ2FNHC2IvDJKEoPW7kk\nrQ0864VWnecE3gtJs4AnSN0mk0lnFgvkHlQs5rn+jZSwvkZaxv6TKDYVWF5I2h5ozACaHhF/KDOe\n5VlR7uL7wHOkUs/nkKa7DiDV5b6yxPCWeU7gvSgKWe1E6nceBfyGtNv29JLieVNEPN3t2EZlLi6y\n5ZukLtJWe6uRKjF+LCL+WGxocN7y0r1XFg9i9iIiXouIKyNiAqnC2UOkcq6HlBTSTZI+27gh6Ruk\nLgWzsgyKiKsibRf2VET8ESAi7i85ruWC54EvhtI+nLuQzsJHAv9LeUnzw8AkSZ8BRgD3kfZBNCtL\n83qIl7vd58v7DnMXSi8knU3qa/0tcH5ETCs5JCQdTFrM8jrwuYjIPh/drKFphW7z6lyK24MjIvem\nDssVJ/BeKO0+3lg+3vyHyrZ8vFs815D2Bj0MWA84HbgxIr6ZMw4zqwZ3ofQiIqo2RnBSRFxa/Pz3\nYnOHVkvLzWw54DPwmimmEm4YEdcUJW4HRcSLZcdlZvlV7QzTelEsUb4I+FlxaF3S3pRmthxyAq+X\ng0k7bb8AEBEPAm8qNSIzK40TeL280rx5cLEzjvvAzJZTTuD1coOko4AhReGgC4HLS47JzEriQcwa\nkTQA2Jemim/AaS4aZLZ8cgI3M6spzwOvAUn30Etfd6M2uJktX3wGXgPF3O8eRcRjuWIxs+pwAq+x\nYjf28RFxcNmxmFl+7kKpGUmbAp8HPgM8ClxSbkRmVhYn8BqQ9C5SOdvxwDPABaSrp+1LDczMSuUu\nlBooqiLeBOzb2D5N0iMR8Y5yIzOzMnkhTz18irSB8XWSTpW0I9325zSz5Y/PwGtE0jBgN1JXyg7A\n2cCvIuKqUgMzs1I4gdeUpDVIA5l7RMSOZcdjZvk5gZuZ1ZT7wM3MasoJ3MysppzArdYkvSZpqqTp\nku6W9I2iamM7nvtMSY8Wz3+/pGOa7rte0gOS/lTcd5Kk1dvRrllfOYFb3b0cEWMi4j3ATsDHgGMW\n8ztL4lsRMQYYA0yQtH7TfV8oComNAl4BLmtju2aL5QRuy4yIeBo4ADhEyUBJx0u6ozhTPhBA0ocl\nXdH4veLsee/FPP3g4vtLLdqdB0wE3iZpdFv+MWZ94ARuy5SIeAQYSNordF9gdkRsDmwO7N/tDLov\njpc0FZgJnF98SLRq9zXgbmDjpQ7ebAk5gduy7KPAF4sEPBlYC9hwCZ+j0YXyZmBHSVv38livjrWs\nXMzKlimS3gG8BjxNSqiHRsTvuz1mWxY9eRnMYkTEPyRdD2wL3Nqi3YHA+4D7ljp4syXkM3BbZkga\nDvwUOKnYJ/T3wFckrVDc/66iHMFjwCaSVipmjix2JaukQcAWwMMt7lsB+B7wRET8qW3/ILPF8Bm4\n1d2QootkBWA+cA7w38V9pwEjgTslCZgFfCIinpD0S2Aaqab6Xb08//GS/g1YEbiWReuvnyvpFWAl\n4BpSnRqzbLyU3sysptyFYmZWU07gZmY15QRuZlZTTuBmZjXlBG5mVlNO4GZmNeUEbmZWU07gZmY1\n9f9EoT3nzLhZLgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "iIkioCTS4_Nv", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Aqui vale salientar que há uma diferença de fuso horário de uma hora portanto alguns não necessariamente são mais tardes. " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "MhUnGLXkAP9Z", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"### Dia com mais bom dias\n", | |
"Os dias mais movimentados:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ndKwxFAJARxt", | |
"colab_type": "code", | |
"outputId": "63a2467f-7a06-4e65-d1ff-1f87932f23f7", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 373 | |
} | |
}, | |
"source": [ | |
"df.groupby('Data').count().sort_values('Deu BD', ascending=False).head(10)" | |
], | |
"execution_count": 185, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Hora</th>\n", | |
" <th>Deu BD</th>\n", | |
" <th>Hora Frac</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Data</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>12/26/16</th>\n", | |
" <td>18</td>\n", | |
" <td>18</td>\n", | |
" <td>18</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5/7/17</th>\n", | |
" <td>18</td>\n", | |
" <td>18</td>\n", | |
" <td>18</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10/10/16</th>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5/29/17</th>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12/15/17</th>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3/13/17</th>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7/24/17</th>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12/31/16</th>\n", | |
" <td>16</td>\n", | |
" <td>16</td>\n", | |
" <td>16</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4/15/18</th>\n", | |
" <td>16</td>\n", | |
" <td>16</td>\n", | |
" <td>16</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5/27/17</th>\n", | |
" <td>16</td>\n", | |
" <td>16</td>\n", | |
" <td>16</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Hora Deu BD Hora Frac\n", | |
"Data \n", | |
"12/26/16 18 18 18\n", | |
"5/7/17 18 18 18\n", | |
"10/10/16 17 17 17\n", | |
"5/29/17 17 17 17\n", | |
"12/15/17 17 17 17\n", | |
"3/13/17 17 17 17\n", | |
"7/24/17 17 17 17\n", | |
"12/31/16 16 16 16\n", | |
"4/15/18 16 16 16\n", | |
"5/27/17 16 16 16" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 185 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "qV2sY_W6B2gT", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"### Exportando a base de dados" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "H2v2BR902o5Y", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Por fim, vamos exportar esta base de dados para CSV. Assim você também poderá fazer análises usando o Excel ou Google Sheets:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "r_37RJ7M0RPB", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"df.to_csv('whatsapp-familia-bomdia.csv')" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "GuMVJjTD2_Gn", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Como o Google Drive está montado, o arquivo estará salvo na mesma pasta que o arquivo txt importado anteriormente. " | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment